Распад пуриновых и пиримидиновых нуклеотидов. Распад пуриновых и пиримидиновых нуклеотидов до конечных продуктов в тканях. Распад пиримидиновых нуклеозидов

Распад пуриновых нуклеотидов.

Аденозин и гуанозин, которые образуются при гидролизе пуриновых нуклеотидов, подвергаются ферментативному распаду с образованием конечного продукта – мочевой кислоты, которая выводится с мочой из организма.

Распад пиримидиновых нуклеотидов.

Начальные этапы этого процесса катализируются специфическими ферментами. Конечные продукты: СО2, NН3, мочевина, β-аланин, β-аминоизомасляная кислота. β-аланин используется для синтеза дипептидов мышц – карнозина и ансерина или выделяется с мочой.

21. Коферменты : Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы (коферментах) и/или в ионах металлов (кофакторах). Термин. "кофермент" был введён в начале XX века и обозначал часть некоторых ферментов, которая легко отделялась от белковой молекулы фермента и удалялась через полупроницаемую мембрану при диализе. Несколько позже было выяснено, что большинство ферментов состоит из термолабильной белковой части и термостабильного небелкового фактора - кофермента. Белковая часть получила название "апофермент", который в отсутствие кофермента не обладает каталитической активностью. Кофермент с белковой молекулой (апоферментом) формируют молекулу холофермента, обладающую каталитической активностью.

Кофакторы

Более 25% всех ферментов для проявления полной каталитической активности нуждается в ионах металлов. Рассмотрим роль кофакторов в ферментативном катализе.

1. Роль металлов в присоединении субстрата

в активном центре фермента

Ионы металла выполняют функцию стабилизаторов молекулы субстрата, активного центра фермента и конформации белковой молекулы фермента, а именно третичной и четвертичной структур.

Ионы металлов - стабилизаторы молекулы субстрата

Для некоторых ферментов субстратом служит комплекс превращаемого вещества с ионом металла. Например, для большинства киназ в качестве одного из субстратов выступает не молекула АТФ, а комплекс Mg2+-ATФ. В этом случае ион Mg2+ не взаимодействует непосредственно с ферментом, а участвует в стабилизации молекулы АТФ и нейтрализации отрицательного заряда субстрата, что облегчает его присоединение к активному центру фермента

Схематично роль кофактора при взаимодействии фермента и субстрата можно представить как комплекс E-S-Me, где Е - фермент, S - субстрат, Me - ион металла.



В качестве примера можно привести расположение субстратов в активном центре гексокиназы

Гексокиназа катализирует перенос концевого, γ-фосфатного остатка молекулы АТФ на глюкозу с образованием глюкозо-6-фосфата:

Участие ионов магния в присоединении субстрата в активном центре гексокиназы. В активном центре гексокиназы есть участки связывания для молекулы глюкозы и комплекса Мд2+-АТФ. В результате ферментативной реакции происходит перенос концевого, γ-фосфатного остатка молекулы АТФ на глюкозу с образованием глюкозо-6-фосфата.

Ион Mg2+ участвует в присоединении и "правильной" ориентации молекулы АТФ в активном центре фермента, ослабляя фосфоэфирную связь и облегчая перенос фосфата на глюкозу.

Ионы металла - стабилизаторы активного центра фермента

В некоторых случаях ионы металла служат "мостиком" между ферментом и субстратом. Они выполняют функцию стабилизаторов активного центра, облегчая присоединение к нему субстрата и протекание химической реакции. В ряде случаев ион металла может способствовать присоединению кофермента. Перечисленные выше функции выполняют такие металлы, как Mg2+, Mn2+, Zn2+, Co2+, Мо2+. В отсутствие металла эти ферменты активностью не обладают. Такие ферменты получили название "металлоэнзимы". Схематично данный процесс взаимодействия фермента, субстрата и металла можно представить следующим образом:



К металлоэнзимам относят, например, фермент пируват киназу (рис. 2-4), катализирующий реакцию:

Пищеварительные ферменты:

2.Желудок

3.Тонкий кишечник

Протеазы:

Карбоксипептидаза

Стеапсин, расщепляющий жиры.

Ферменты тонкой кишки

22. Полиферментная сиситема: Каждая клетка организма имеет свой специфический набор ферментов. Некоторые из них содержатся во всех клетках, другие присутствуют только в некоторых. В клетке работа каждого фермента, как правило, не индивидуальная, а тесно связана с другими ферментами, т.е. из отдельных ферментов формируются полиферментные системы, или конвейеры. Субстрат иногда во время своего превращения проходит длинную цепь реакций, в которых участвует много ферментов. Продукт реакции, катализируемой первый фермент, служит субстратом для второго фермента и т.д. Примером может служить процесс гликолиза. Все ферменты гликолиза имеющиеся в растворимом состоянии. В процессах превращения глюкозы до молочной кислоты участвует целый ряд ферментов. Положение каждого фермента в цепи устанавливается по родством с субстратами (начиная с глюкозы), каждый из которых соответственно являются продуктом реакции, катализованои предыдущим ферментом. Это увеличивает скорость ферментативных реакций, и в такой цепи промежуточные продукты не накапливаются.

Многие полиферментные ансамблей структурно связаны с какой-либо органеллы (митохондрии, рибосомы, ядро) или биомембран-ми и составляют высокоорганизованные системы, обеспечивающие жизне-воважливи функции, например, тканевое дыхание, т.е. перенос электронов и протонов от субстратов к кислорода через систему дыхательных ферментов, закрепленных на внутренней мембране митохондрий. Некоторые ферменты, участвующие в реакции одной цепи метаболизма, объединяются в мультиэнзимных комплексы с определенной функцией. Типичным примером подобных надмолекулярных комплексов является пируватдегидрогеназный комплекс, состоящий из нескольких ферментов, участвующих в окислении пировиноградной кислоты до ацетил-КоА, или синтетаза жирных кислот, состоящий из семи структурно связанных ферментов, которые выполняют функцию синтеза жирных кислот.

23. Пищеварение в метоболизме: Метаболи́зм (от греч. μεταβολή - «превращение, изменение»), или обмен веществ - набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Пищеварение: Такие макромолекулы, как крахмал, целлюлоза или белки, должны расщепляться до более мелких единиц прежде, чем они могут быть использованы клетками. Несколько классов ферментов принимают участие в деградации: протеазы, которые расщепляют белки до пептидов и аминокислот, гликозидазы, которые расщепляют полисахариды до олиго- и моносахаридов.

Микроорганизмы выделяют гидролитические ферменты в пространство вокруг себя, чем отличаются от животных, которые выделяют такие ферменты только из специализированных железистых клеток. Аминокислоты и моносахариды, образующиеся в результате активности внеклеточных ферментов, затем поступают в клетки с помощью активного транспорта

Пищеварительные ферменты: Ферме́нты пищеваре́ния, пищеварительные ферменты - ферменты, расщепляющие сложные компоненты пищи до более простых веществ, которые затем всасываются в организм. В более широком смысле пищеварительными ферментами также называют все ферменты, расщепляющие крупные (обычно полимерные) молекулы на мономеры или более мелкие части. Пищеварительные ферменты находятся в пищеварительной системе человека и животных. Кроме этого, к таким ферментам можно отнести внутриклеточные ферменты лизосом. Основные места действия пищеварительных ферментов в организме человека и животных - это ротовая полость, желудок, тонкая кишка. Эти ферменты вырабатываются такими железами, как слюнные железы, железы желудка, поджелудочная железа и железы тонкой кишки. Часть ферментативных функций выполняется облигатной кишечной микрофлорой. По субстратной специфичности пищеварительные ферменты делятся на несколько основных групп:

протеазы (пептидазы) расщепляют белки до коротких пептидов или аминокислот

липазы расщепляют липиды до жирных кислот и глицерина

карбогидразы гидролизуют углеводы, такие как крахмал или сахара, до простых сахаров, таких как глюкоза

нуклеазы расщепляют нуклеиновые кислоты до нуклеотидов.

1.Ротовая полость - Слюнные железы секретируют в полость рта альфа-амилазу (птиалин), которая расщепляет высокомолекулярный крахмал до более коротких фрагментов и до отдельных растворимых сахаров (декстрины, мальтоза, мальтриоза).

2.Желудок

Ферменты, секретирующиеся желудком называются желудочными ферментами.

Пепсин - основной желудочный фермент. Расщепляет белки до пептидов.

Желатиназа расщепляет желатин и коллаген, основные протеогликаны мяса.

3.Тонкий кишечник

Ферменты поджелудочной железы

Поджелудочная железа является основной железой в системе пищеварения. Она секретирует ферменты в просвет двенадцатиперстной кишки.

Протеазы:

Трипсин является протеазой, аналогичной пепсину желудка.

Химотрипсин - также протеаза, расщепляющая белки пищи.

Карбоксипептидаза

Несколько различных эластаз, расщепляющих эластин и некоторые другие белки.

Нуклеазы, расщепляющие нуклеиновые кислоты ДНК и РНК.

Стеапсин, расщепляющий жиры.

Амилазу, расщепляющую крахмал и гликоген, а также другие углеводы.

Липаза поджелудочной железы является важнейшим ферментом в переваривании жиров. Она действует на жиры (триглицериды), предварительно эмульгированные желчью, секретируемой в просвет кишечника печенью.

Ферменты тонкой кишки

Несколько пептидаз, в том числе:

энтеропептидаза - превращает трипсиноген в трипсин;

аланинаминопептидаза - расщепляет пептиды, образовавшиеся из белков после действия протеаз желудка и поджелудочной железы.

Ферменты, расщепляющие дисахариды до моносахаридов:

сахараза расщепляет сахарозу до глюкозы и фруктозы;

мальтаза расщепляет мальтозу до глюкозы;

изомальтаза расщепляет мальтозу и изомальтозу до глюкозы;

лактаза расщепляет лактозу до глюкозы и галактозы.

Липаза кишечника расщепляет жирные кислоты.

Эрепсин, фермент, расщепляющий белки.

24. Тканевое дыхание. Клеточное или тканевое дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.

Впервые сущность дыхания объяснил А.-Л. Лавуазье (1743-1794), обративший внимание на сходство между горением органических веществ вне организма и дыханием животных. Постепенно становились ясными принципиальные различия между этими двумя процессами: в организме окисление протекает при относительно низкой температуре в присутствии воды, и его скорость регулируется обменом веществ. В настоящее время биологическое окисление определяется как совокупность реакций окисления субстратов в живых клетках, основная функция которых - энергетическое обеспечение метаболизма. В развитие концепций биологического окисления в XX в. важнейший вклад внесли А.Н. Бах, О. Варбург, Г. Крепс, В.А. Энгель-гардт, В.И. Палладин, В.А. Белицер, С.Е. Северин, В.П. Скулачев.

БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ - совокупность ферментативных окислительно-восстановительных реакций, протекающих в живых клетках. В процессе биологического окисления происходит расщепление питательных веществ, и освобождаемая при этом энергия запасается в удобной для использования клетками форме т. н. богатых энергией соединений - аденозинтрифосфатов и др. Эти соединения затем расходуются на обеспечение всех процессов жизнедеятельности; часть энергии рассеивается в виде тепла. Значительная часть реакций биологического окисления осуществляется в митохондриях

Анаэробное окисление аммония , anammox - биохимический процесс окисления иона аммония нитрит-анионом в анаэробных условиях. Служит источником энергии для фиксации углекислого газа. Описан у следующих родов бактерий: Brocadia, Kuenenia, Anammoxoglobus, Jettenia, Scalindua. Все они относятся к планктомицетам.

Процесс был открыт в 1986 году. Сейчас создана новая технология очистки сточных вод от соединений азота с помощью осуществляющих анаэробное окисление аммония бактерий. В Роттердаме (Нидерланды) построена и запущена первая очистная станция на её основе. Важными достоинствами данной технологии являются уменьшение выбросов CO2 в атмосферу на 85-90% по сравнению с традиционными методами, а также относительная дешевизна.

Общее уравнение реакций анаэробного окисления аммония:

NH4+ + NO2− → N2 + 2H2O.

Анаэробное окисление метана - процесс окисления метана до углекислого газа, производимый некультивируемыми (англ. VBNC) археями групп ANME-1, ANME-2 и ANME-3, близкими к Methanosarcinales, в ассоциации с сульфатредуцирующими и денитрифицирующими бактериями при отсутствии в среде молекулярного кислорода. Биохимия и распространённость процесса в природе изучены пока недостаточно.

26. Пируват, образовавшийся в реакциях гликолиза (в цитоплазме), должен быть транспортирован в митохондрии. Транспорт осуществляется специальной «челночной» системой. В матриксе митохондрии, прикрепившись к ее внутренней мембране, находится сложный полиферментный комплекс – пируватдегидрогеназа.

Пируватдегидрогеназа состоит из 60 полипептидных цепей, которые можно разделить на 3 основных фермента: Е1 – собственно пируватдегидрогеназа (состоит из 24 субъединиц); Е2 – дигидролипоилтрансацетилаза (также 24 субъединицы); Е3 – дигидролипоилдегидрогеназа (12 субъединиц).

Последовательность реакций представлена на рис.5.12. Е1 катализирует декарбоксилирование ПВК с участием кофермента тиаминпирофосфата (ТПФ). Образовавшийся продукт реакции (гидроксиэтильное производное ТПФ) при участии Е2 реагирует с окисленной липоевой кислотой(ЛК). Липоевая кислота – низкомолекулярное азотсодержащее соединение – является коферментом Е2.

СН2 СН – (СН2)4 – СООН

Липоевая кислота

Дисульфидная группа ЛК способна восстанавливаться и ацетилироваться. В реакции, катализируемой дигидролипоилтрансацетилазой (Е2), образуется ацетиллипоевая кислота. Далее это соединение реагирует с коэнзимом А (КоА-SH не является собственным коферментом Е2) – при этом образуется восстановленная форма ЛК (дигидролипоевая кислота) и ацетил-КоА.

Наконец, начинает функционировать Е3 , коферментом которого является ФАД: кофермент окисляет дигидролипоевую кислоту и сам при этом восстанавливается (ФАДН2) . Восстановленный флавиновый кофермент реагирует с митохондриальным НАД+, в свою очередь, восстанавливая его (НАДН ·Н+).

Таким образом, в окислительном декарбоксилировании ПВК участвует фактически три фермента, составляющих единый пируватдегидрогеназный комплекс, и 5 коферментов: ТПФ, ЛК и ФАД – собственные коферменты комплекса, КоА-SH и НАД+ – внешние, приходящие “извне”. Образующийся ацетил-КоА затем окисляется в цикле Кребса, а водород с НАДН ·Н+ поступает в дыхательную цепь митохондрий.

Механизм функционирования пируватдегидрогеназного комплекса

Пируватдегидрогеназа отличается большим отрицательным редокс-потенциалом, который способен обеспечить не только восстановление НАД+, но и способствовать образованию высокоэнергетической тиоэфирной связи в ацетил-КоА (СН3-СО~ SкоА).

При недостаточном содержании в диете входящих в состав пируватдегидрогеназы витаминов, в первую очередь тиамина, активность фермента снижается. Это приводит к накоплению в крови и тканях пирувата и лактата и развитию метаболического ацидоза. При выраженном дефиците тиамина развивается некомпенсированный ацидоз, который без лечения приводит к летальному исходу.

^ Регуляция активности пируватдегидрогеназы

Пируватдегидрогеназный комплекс может существовать в активной и неактивной формах. Переход одной формы в другую осуществляется путем обратимого фосфорилирования с участием киназы и дефосфорилирования с участием фосфатазы. При этом фосфорилированная форма является неактивной, а дефосфорилированная – активной.

При низкой концентрации инсулина и высоком уровне энергообеспеченности клетки (АТФ, ацетил-КоА и НАДН·Н+) этот комплекс находится в неактивном состоянии. Активирование пируватдегидрогеназного комплекса индуцируется инсулином, КоА-SН, пируватом, АДФ и ионами магния.

28. Тканевое дыхание и биологическое окисление. Распад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к выделению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом:

С6Н12О6 + 6O2 = 6СO2+ 6Н2O + 2780 кДж/моль. (1)

Потребление кислорода тканями зависит от интенсивности реакций тканевого дыхания. Наибольшей скоростью тканевого дыхания характеризуются почки, мозг, печень, наименьшей – кожа, мышечная ткань (в покое). Уравнение (2) описывает суммарный результат многоступенчатого процесса, приводящего к образованию молочной кислоты (см. главу 10) и протекающего без участия кислорода:

С6Н12Об = 2С3Н6О3 + 65 кДж/моль. (2)

Этот путь отражает, по-видимому, энергетическое обеспечение простейших форм жизни, функционировавших в бескислородных условиях. Современные анаэробные микроорганизмы (осуществляющие молочнокислое, спиртовое и уксуснокислое брожение) получают для жизнедеятельности энергию, производимую в процессе гликолиза или его модификаций.

Использование клетками кислорода открывает возможности для более полного окисления субстратов. В аэробных условиях продукты бескислородного окисления становятся субстратами цикла трикарбоновых кислот (см. главу 10), в ходе которого образуются восстановленные дыхательные переносчики НАДФН, НАДН и флавиновые коферменты. Способность НАД+ и НАДФ+ играть роль промежуточного переносчика водорода связана с наличием в их структуре амида никотиновой кислоты. При взаимодействии этих кофакторов с атомами водорода имеет место обратимое гидрирование (присоединение атомов водорода):

При этом в молекулу НАД+ (НАДФ+) включаются 2 электрона и один протон, а второй протон остается в среде.

Во флавиновых коферментах (ФАД или ФМН), активной частью молекул которых является изоаллоксазиновое кольцо, в результате восстановления чаще всего наблюдается присоединение 2 протонов и 2 электронов одновременно:

Восстановленные формы этих кофакторов способны транспортировать водород и электроны к дыхательной цепи митохондрий или иных энерго-сопрягающих мембран

Мочевая кислота у человека и ряда животных (приматы, птицы и некото­рые рептилии) является конечным продуктом распада пуриновых основа­ний и выводится из организма. Образование мочевой кислоты происходит главным образом в печени. Мочевая кислота - основной продукт распада нуклеотидов у человека. В организме ежесуточно образуется 0,5-1 г мо­чевой кислоты, которая выводится через почки. В крови здорового чело­века содержится 3-7 мг/дл мочевой кислоты. Хроническое повышение концентрации мочевой кислоты (гиперурикемия) часто приводит к разви­тию подагры - отложение малорастворимой мочевой кислоты (и ее солей уратов) а виде кристаллов в крови и в тканях. Это заболевание носит наследственный характер и связано с дефектом фермента, катализирую­щего реакцию превращения гипоксантина и гуанина в инозиновую кисло­ту - ИМФ (см. раздел 12.3 "Биосинтез нуклеотидов") и ГМФ соответственно. Вследствие этого гипоксантин и гуанин не используются повторно длясинтеза нуклеотидов, а целиком превращаются в мочевую кислоту, что и ведет к гиперурикемии.

У большинства животных и растений есть ферменты, вызываю­щие дальнейший распад мочевой кислоты до мочевины (1) и глиоксалевой кислоты (2):

β-изомасляная кислота

H 2 N-COOH → NH 3 + СО 2 .

Как правило, продукты распада нуклеиновых кислот выводятся из организма. Всасываются преимущественно нуклеозиды, и в таком виде часть азотистых оснований может быть использована для синтеза нук­леиновых кислот организма. Если же происходит распад нуклеозидов до свободных оснований, то гуанин не используется для синтетических це­лей, а остальные в незначительном количестве могут участвовать в синтезе нуклеиновых кислот.

Биосинтез нуклеотидов

Синтез нуклеиновых кислот определяется скоростью синтеза мононуклеотидов, при этом синтез последних зависит от наличия всех их трех компонентов. Пентозы являются продуктами обмена глюкозы, фос­форная кислота в достаточном количестве поступает с пищей. Лими­тирующим фактором является биосинтез азотистых оснований.


Похожая информация:

  1. Аккуратно работайте с растворами кислот и оснований. При попадании растворов на кожу, немедленно обратитесь к учителю.

Обмен нуклеотидов

Распад пуриновых нуклеотидов

Катаболизм пуриновых нуклеотидов включает реакции гидролитического отщепления фосфатного остатка, фосфоролитического отщепления рибозного остатка и аминогруппы. Конечным продуктом расщепления пуринов в организме человека является мочевая кислота. Последняя выделяется с мочой.

Распад АМФ

В результате вышеперечисленных реакций из АМФ образуется гипоксантин:

Распад ГМФ

Гуанозинмонофосфат превращается в ксантин и далее в мочевую кислоту.

Биосинтез пуриновых нуклеотидов

В экспериментах с мечеными веществами еще в 50-ых годах ХХ века было выяснено происхождение атомов в пуриновом кольце пуриновых нуклеотидов. Оказалось, что пуриновая структура образуется из мелких фрагментов, поставляемых разными соединениями.

Позднее была изучена вся последовательность реакций, ведущих к образованию пуриновых нуклеотидов. Синтез начинается с образования 5-фосфорибозил-1-амина. Затем к аминогруппе присоединяется остаток глицина и далее последовательно протекают реакции образования пуринового ядра с использованием метенильной группы метенил-Н 4 -фолата, амидной группы глутамина, углекислого газа, аминогруппы аспарагиновой кислоты, формильного остатка формил-Н 4 -фолата. Результатом является образование инозиновой кислоты.

Инозиновая кислота – это нуклеотид, пуриновая часть которого представлена гипоксантином. Инозиновая кислота служит предшественником основных пуриновых нуклеотидов – АМФ и ГМФ.

Под действием специфических киназ нуклеозидмонофосфаты (АМФ и ГМФ) превращаются в нуклеозиддифосфаты и нуклеозидтрифосфаты.

Регуляция биосинтеза пуриновых нуклеотидов

Лимитирующей стадией биосинтеза пуриновых нуклеотидов является реакция образования 5’-фосфорибозил-1-амина. Фермент, катализирующий эту реакцию, ингибируется АМФ и ГМФ. Кроме того, эта метаболическая цепь регулируется в месте ее разветвления: АМФ ингибирует реакцию образования аденилосукцината, а ГМФ – реакцию образования ксантиловой кислоты.



Биосинтез пуриновых нуклеотидов из аденина и гуанина

В результате превращений нуклеотидов в тканях постоянно образуются свободные пуриновые основания – аденин и гуанин. Они могут повторно использоваться для синтеза нуклеотидов при участии ферментов аденинфосфорибозилтрансферазы и гипоксантин-гуанин-фосфорибозилтрансферазы:

аденин + фосфорибозилдифосфат ® АМФ + Н 4 Р 2 О 7

гуанин + фосфорибозилдифосфат ® ГМФ + Н 4 Р 2 О 7

Этот механизм повторного включения азотистых оснований в метаболизм называют “путем спасения”. Он имеет вспомогательное значение, давая от 10 до 20% общего количества нуклеотидов.

В результате совместного действия этих ферментов снижается выход конечного продукта обмена пуринов – мочевой кислоты.

Другой “запасной путь” включает фосфорилирование пуриновых нуклеотидов при участии АТФ. Так, аденозинкиназа катализирует фосфорилирование аденозина до АМФ или дезоксиаденозина до дАМФ:

Аденозин + АТФ → АМФ + АДФ

Гиперурикемия. Подагра

В крови здоровых мужчин содержится 0,18-0,53 ммоль/л и здоровых женщин – 0,15-0,45 ммоль/л мочевой кислоты. Хроническое повышение концентрации мочевой кислоты в крови (гиперурикемия) часто приводит к развитию подагры. Клиническая картина подагры характеризуется: 1) повторяющимися приступами острого воспаления суставов, чаще всего мелких, вследствие отложения кристаллов урата натрия в суставе 2) образованием подагрических узлов (тофусов), возникающих в результате местного отложения и накопления уратов. Образование узлов в суставах деформирует их и нарушает функцию. Отложение уратов в ткани почек приводит к почечной недостаточности – частому осложнению подагры.

Подагра – распространенное заболевание: в разных странах им страдает от 0,3 до 1,7% взрослого населения, причем мужчины болеют в 20 раз чаще, чем женщины. Гиперурикемия чаще всего имеет наследственный характер.

Известна тяжелая форма гиперурикемии – синдром Леша-Нихана, который наследуется как рецессивный признак, сцепленный с Х-хромосомой. У больных мальчиков кроме симптомов, характерных для подагры, наблюдаются церебральные параличи, нарушения интеллекта, попытки наносить себе раны (укусы пальцев, губ). Эта болезнь связана с дефектом фермента – гипоксантин – гуанин-фосфорибозилтрансферазы, вследствие чего гипоксантин и гуанин не могут использоваться повторно для синтеза нуклеотидов, а целиком превращаются в мочевую кислоту, что и ведет к гиперурикемии.

Основным препаратом, который используется для лечения гиперурикемии, является аллопуринол – структурный аналог гипоксантина. Аллопуринол является конкурентным ингибитором ксантиноксидазы и его прием снижает содержание мочевой кислоты до нормальных величин. Содержание гипоксантина при этом возрастает. Однако гипоксантин примерно в 10 раз лучше, чем мочевая кислота, растворяется в крови и моче, и поэтому легче выводится из организма.

Распад пиримидиновых нуклеотидов

Под действием нуклеотидаз и нуклеозидфосфорилаз уридиловая кислота (УМФ) распадается до урацила, цитидиловая кислота (ЦМФ) – до цитозина, тимидиловая кислота (ТМФ) – до тимина.

Б. "Запасные" пути синтеза пиримидиновых нуклеотидов

Использование пиримидиновых оснований и нуклеозидов в реакциях реутилизации препятствует катаболизму этих соединений до конечных продуктов с расщеплением пиримидинового кольца. В ресинтезе пиримидинов участвуют некоторые ферменты катаболизма нуклеотидов. Так, уридинфосфорилаза в обратимой реакции может рибозилироватъ урацил с образованием уридина.

Урацил + Рибозо-1-фосфат → Уридин + Н 3 РО 4 .

Превращение нуклеозидов в нуклеотиды катализирует уридин-цитидинкиназа.

Часть ЦМФ может превращаться в УМФ под действием цитидиндезаминазы и пополнять запасы уридиловых нуклеотидов.

ЦМФ + Н 2 О → УМФ + NH 3 .

В. Регуляция синтеза пиримидиновых НУКЛЕОТИДОВ

Регуляторным ферментом в синтезе пиримидиновых нуклеотидов является полифункциональныйКАД-фермент. УМФ и пуриновые нуклеотиды аллостерически ингибируют, а ФРДФ активирует его карбамоилсинтетазную активность, тогда как активность аспартаттранскарбамоилазного домена ингибирует ЦТФ, но активирует АТФ (рис. 10-15).

Этот способ регуляции позволяет предотвратить избыточный синтез не только УМФ, но и всех других пиримидиновых нуклеотидов и обеспечить сбалансированное образование всех четырёх основных пуриновых и пиримидиновых нуклеотидов, необходимых для синтеза РНК.

Оротацидурия

Это единственное нарушение синтеза пиримидинов de novo. Оно вызвано снижением активности УМФ-синтазы, которая катализирует образование и декарбоксилирование ОМФ. Поскольку в эмбриогенезе от образования пиримидинов de novo зависит обеспечение синтеза ДНК субстратами, то жизнь плода невозможна при полном отсутствии активности этого фермента. Действительно, у всех пациентов с оротацидурией отмечают заметную, хотя и очень низкую активность УМФ-синтазы. Установлено, что содержание оротовои кислоты в моче пациентов (1 г/сут и более) значительно превосходит количество оротата, которое ежедневно синтезируется в норме (около 600 мг/сут). Снижение синтеза пиримидиновых нуклеотидов, наблюдающееся при этой патологии, нарушает регуляцию КАД-фермента по механизму ретроингибирования, из-за чего возникает гиперпродукция оротата.

Клинически наиболее характерное следствие оротацидурии - мегалобластная анемия, вызванная неспособностью организма обеспечить нормальную скорость деления клеток эритроцитарного ряда. Её диагностируют у детей на том основании, что она не поддаётся лечению препаратами фолиевой кислоты.



Недостаточность синтеза пиримидиновых нуклеотидов сказывается на интеллектуальном развитии, двигательной способности и сопровождается нарушениями работы сердца и ЖКТ. Нарушается формирование иммунной системы, и наблюдается повышенная чувствительность к различным инфекциям.

Гиперэкскреция оротовои кислоты сопровождается нарушениями со стороны мочевыводя-щей системы и образованием камней. При отсутствии лечения больные обычно погибают в первые годы жизни. При этом оротовая кислота не оказывает токсического эффекта. Многочисленные нарушения в работе разных систем организма вызваны "пиримидиновым голодом".

Для лечения этой болезни применяют уридин (от 0,5 до 1 г/сут), который по "запасному" пути превращается в УМФ.

Уридин + АТФ → УМФ + АДФ.

Нагрузка уридином устраняет "пиримидиновый голод", а поскольку из УМФ могут синтезироваться все остальные нуклеотиды пиримидинового ряда, то снижается выделение оротовои кислоты из-за восстановления механизма ретроингибирования КАД-фермента. Для больных оротацидурией лечение уридином продолжается в течение всей жизни, и этот нуклеозид становится для них незаменимым пищевым фактором.

Кроме генетически обусловленных причин, оротацидурия может наблюдаться:

при гипераммониемии, вызванной дефектом любого из ферментов орнитинового цикла,

за исключением карбамоилфосфат- синтетазы I. В этом случае карбамоилфосфат, синтезированный в митохондриях, выходит в цитозоль клеток и начинает использоваться на образование пиримидиновых нуклеотидов. Концентрация всех метаболитов, в том числе и оротовой кислоты, повышается. Наиболее значительная экскреция оротата отмечается при недостаточности орнитинкарбамоилтрансферазы (второго фермента орнитинового цикла);

в процессе лечения подагры аллопуринолом, который превращается в оксипуринолмононуклеотид и становится сильным ингибитором УМФ-синтазы. Это приводит к накоплению оротовой кислоты в тканях и крови.



3. Инсулин-строение, синтез и секреция. Регуляция синтеза и секреции инсулина. Механизм действия инсулина. Роль инсулина и контринсулярных гормонов (адреналина и глюкагона) в регуляции метаболизма. Изменение гормонального статуса и метаболизма при сахарном диабете. Диабетическая кома.

Инсулин - полипептид, состоящий из двух полипептидных цепей. Цепь А содержит 21 аминокислотный остаток, цепь В - 30 аминокислотных остатков. Обе цепи соединены между собой двумя дисульфидными мостиками (рис. 1). Инсулин может существовать в нескольких формах: мономера, димера и гексамера. Гексамерная структура инсулина стабилизируется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Молекула инсулина содержит также внутримолекулярный дисульфидный мостик, соединяющий шестой и одиннадцатый остатки в А-цепи. Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека.

В обеих цепях во многих положениях встречаются замены, не оказывающие влияния на биологическую активность гормона. Наиболее часто эти замены обнаруживаются в положениях 8, 9 и 10 цепи А.

В то же время в положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, что свидетельствует о важности этих участков для проявления биологической активности инсулина. Использование химических модификаций и замен аминокислот в этих участках позволили установить структуру активного центра инсулина, в формировании которого принимают участие остатки фенилаланина В-цепи в положениях 24 и 25 и N- и С-концевые остатки цепи А.

Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последовательного протеолиза превращаются в активный гормон. Биосинтез препроинсулина начинается с образования сигнального пептида на полирибосомах, связанных с ЭР. Сигнальный пептид проникает в просвет ЭР и направляет поступление в просвет ЭР растущей полипептидной цепи. После окончания синтеза препроинсулина сигнальный пептид, включающий 24 аминокислотных остатка, отщепляется (рис. 2).

Рис.1. Структура инсулина человека. А. Первичная структура инсулина. Б. Модель третичной структуры инсулина (мономер): 1 - А-цепь; 2 - В-цепь; 3 - участок связывания с рецептором.

Проинсулин (86 аминокислотных остатков) поступает в аппарат Гольджи, где под действием специфических протеаз расщепляется в нескольких участках с образованием инсулина (51 аминокислотный остаток) и С-пептида, состоящего из 31 аминокислотного остатка.

Инсулин и С-пептид в эквимолярных количествах включаются в секреторные гранулы. В гранулах инсулин соединяется с цинком, образуя димеры и гексамеры. Зрелые гранулы сливаются с плазматической мембраной, и инсулин и С-пептид секретируются во внеклеточную жидкость в результате экзоцитоза. После секреции в кровь олигомеры инсулина распадаются. Т 1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин. Разрушение инсулина происходит под действием фермента инсулиназы в основном в печени и в меньшей степени в почках.

Регуляция синтеза и секреции инсулина. Глюкоза - главный регулятор секреции инсулина, а β-клетки - наиболее важные глюкозо-чувствительные клетки в организме. Глюкоза регулирует экспрессию гена инсулина, а также генов других белков, участвующих в обмене основных энергоносителей. Действие глюкозы на скорость экспрессии генов может быть прямым, когда глюкоза непосредственно взаимодействует с транскрипционными факторами, или вторичным, через влияние на секрецию инсулина и глюкагона. При стимуляции глюкозой инсулин быстро освобождается из секреторных гранул, что сопровождается активацией транскрипции мРНК инсулина.

Рис. 2. Схема биосинтеза инсулина в β-клетках островков Лангерханса. ЭР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсулина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.

Синтез и секреция инсулина не являются строго сопряжёнными процессами. Синтез гормона стимулируется глюкозой, а секреция его является Са 2+ -зависимым процессом и при дефиците Са 2+ снижается даже в условиях высокой концентрации глюкозы, которая стимулирует синтез инсулина.

Потребление глюкозы β-клетками происходит в основном при участии ГЛЮТ-1 и ГЛЮТ-2, и концентрация глюкозы в клетках быстро уравнивается с концентрацией глюкозы в крови. В β-клетках глюкоза превращается в глюкозо-6-фосфат глюкокиназой, имеющей высокую К m , вследствие чего скорость её фосфорилирования почти линейно зависит от концентрации глюкозы в крови. Фермент глюкокиназа - один из важнейших компонентов глюкозо-чувствительного аппарата β-клеток, в который, помимо глюкозы, вероятно, входят промежуточные продукты метаболизма глюкозы, цитратного цикла и, возможно, АТФ. Мутации глюкокиназы приводят к развитию одной из форм сахарного диабета.

Нуклеиновые кислоты поступают в организм с пищей главным образом в составе нуклеопротеинов и высвобождаются в результате действия протеолитических ферментов желудочно-кишечного тракта. Далее под действием дезоксирибонуклеазы и рибонуклеазы панкреатического сока нуклеиновые кислоты гидролизуются до нуклеотидов. Нуклеотиды под воздействием нуклеотидаз или фосфатаз распадаются до нуклеозидов, которые могут всасываться или гидролизоваться далее до азотистых оснований и пентоз.
В тканях нуклеиновые кислоты гидролизуются дезоксирибонуклеазами (ДНК-азы) и рибонуклеазами (РНК-азы) до нуклеотидов, которые под действием нуклеотидаз теряют остаток фосфора. Образующиеся нуклеозиды пуринового и пиримидинового ряда подвергаются дальнейшему катаболизму.

47. Распад пуриновых нуклеотидов .

48. Биосинтез пуриновых нуклеотидов, происхождение атомов «С» и «N» в пуриновом кольце .

Происхождение атомов C and N. Тут мы таки видим как они образуются

Синтез не помещается, да и он же не требуется как в учебнике, сойдет же так как на лекции. А я не умею рисовать формулы и схемы в ворде. Поэтому вот вам поле рисования

Инозиновая кислота как предшественник пуриновых мононуклеотидов

Инозин-я к-та à ГМФà ГДФàГТФ

Иноз к-та àАМФàАДФàАТФ

50. Распад пиримидиновых нуклеотидов.

Биосинтез пиримидиновых нуклеотидов.

Фонд пирймидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников de novo, и только 10-20% от общего количества образуется по "запасным" путям из азотистых оснований или нуклеозидов.

Образование пиримидиновых нуклеотидов DE NOVO

Пиримидиновое кольцо синтезируется из простых предшественников: глутамина, СО 2 и аспарагиновой кислоты и затем связывается с рибозо-5-фосфатом, полученным от ФРДФ.

Процесс протекает в цитозоле клеток. Синтез ключевого пиримидинового нуклеотида - УМФ идёт с участием 3 ферментов, 2 из которых полифункциональны.

Образование дигидрооротата

У млекопитающих ключевой, регуляторной реакцией в синтезе пирймидиновых нуклеотидов является синтез карбамоилфосфата из глутамина, СО 2 и АТФ, в реакции катализируемой кар-бамоилфосфатсинтетазой II (КФС II), которая протекает в цитозоле клеток (рис. 10-12). В реакции NH 2 -гpyппa карбамоилфосфата образуется за счёт амидной группы глутамина.

Рис. 10-12. Синтез карбамоилфосфата.

Карбамоилфосфат, использующийся на образование пирймидиновых нуклеотидов, является продуктом полифункционального фермента, который наряду с активностью КФС II содержит каталитические центры аспартаттранскарбамоилазы и дигидрооротазы. Этот фермент назвали "КАД-фермент". Объединение первых трёх ферментов метаболического пути в единый полифункциональный комплекс позволяет использовать почти весь синтезированный в первой реакции карбамоилфос-фат на взаимодействие с аспартатом и образование карбамоиласпартата, от которого отщепляется вода и образуется циклический продукт - дигидрооротат (рис. 10-13).

Рис. 10-13. Биосинтез УМФ de novo.

Отщепляясь от КАД-фермента, дигидрооротат подвергается дегидрированию NAD-зависимой дигидрооротатдегидрогеназой и превращается в свободное пиримидиновое основание - оротовую кислоту, или оротат.

Поделиться: