Методы контроля дефектов. Дефекты и контроль качества сварных соединений. Общие сведения и организация контроля

Для обеспечения надежной работы машин большое значение имеет периодический контроль их состояния при эксплуата­ционном обслуживании.

Для определения степени износа и обнаружения появив­шихся в процессе изготовления или эксплуатации дефектов деталей производятся различные технические измерения.

Дефект - это отдельное несоответствие того или иного из­делия или детали установленным требованиям. Дефекты бы­вают явными и скрытыми, критическими и некритическими. При наличии критического дефекта использование детали по назначению невозможно.

По происхождению дефекты бывают производственными и эксплуатационными.

К производственным дефектам относятся: усадочные раковины - полости, образующиеся при остывании металла; неметаллические включения, попадающие в металл извне; неравномерность химического состава металла в отливках; волосные трещины, образующиеся внутри толстого проката; закалочные трещины - разрывы металла в процессе закал­ки. Сюда же можно отнести трещины в зоне сварного шва; не­провары -отсутствие сплавления между основным и наплав­ленным металлом, а также между отдельными слоями при многослойной сварке.

К эксплуатационным дефектам относятся: трещины ус­талости -разрывы в детали вследствие длительного действия высоких переменных напряжений, которые возникают в мес­тах концентрации напряжений. Ширина раскрытия трещин усталости не превышает нескольких микрометров. К эксплуа­тационным дефектам также можно отнести:

Коррозионные поражения металла в результате химичес­кого и электрохимического воздействия, масштаб которых за­висит от агрессивности среды. Коррозия может быть сплош­ной, точечной,ячейковой;

Трещины ползучести, которые возникают в металлах по границам зерен при высоких температурах;

Термические трещины, возникающие при резкой смене температур, при недостаточной смазке и заеданиях поверхно­стей трущихся деталей;

Трещины-надрывы, возникающие при перегрузке дета­лей при работе в нерасчетном режиме.



Дефекты геометрии трубы могут быть как производствен­ными, так и эксплуатационными: вмятина; гофр - чередую­щиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси трубы. Эрозия, вмятина в прокате, риска, расслоение, утонение стенки трубы.

Эксплуатация трубопровода при наличии опасных де­фектов допускается при введении ограничений на режимы перекачки.

Причинами дефектов и разрушения валов могут быть при­чины металлургического характера, когда имеются дефекты в заготовках: поверхностные и внутренние трещины, расслое­ния и разрывы вследствие механических и термических на­пряжений, возникающих при изготовлении прутков.

Наиболее опасными с точки зрения возникновения устало­стных трещин являются сечения, в которых изменяется диа­метр вала (галтельные переходы) и шпоночные пазы в местах посадки рабочего колеса на вал и под муфтой. Разрушение вала может произойти под рабочим колесом под действием цик­лических нагрузок. Местом зарождения трещин являются шпоночные канавки, где условия работы материала наибо­лее тяжелые.

Кроме перечисленных дефектов существуют следующие отклонения формы отдельных деталей от проектной: овальность, конусность, бочкообразность, изогнутость, неплоскостность. Существуют также отклонения относительного распо­ложения отдельных деталей в собранном узле: перекос осей и непараллельность, торцевое биение, несоосность, радиальное биение, несимметричность.

Объективная информация о техническом состоянии меха­низмов получается с помощью средств технической диагнос­тики-информационно-измерительного комплекса, позволя­ющего анализировать и накапливать информацию. В основу количественной оценки технического состояния положен ди­агностический параметр. В качестве параметров могут исполь­зоваться: мощность навалу; давление; температура; парамет­ры вибрации и т. д.

При диагностировании оборудования и трубопроводов ис­пользуют следующие важные понятия.

Работоспособность - состояние механизма или иного объекта, при котором он способен выполнять свои функции.

Отказ - событие, заключающееся в нарушении работос­пособности механизма или иного объекта (понятие вероятно­стное).

Неисправность - состояние объекта, при котором он не соответствует одному из требований техдокументации.

Безотказность -свойство объекта непрерывно сохранять работоспособность в течение некоторого периода времени (вре­мени наработки).

Долговечность - свойство механизма сохранять работос­пособность до наступления предельного состояния при установ­ленной системе технического обслуживания и ремонта (ТОР).

Срок службы - это все календарное время эксплуатации оборудования (например, насоса) до предельного износа.

Надежность - это свойство объекта выполнять заданные функции. Это главный качественный показатель объекта. Ос­новной показатель надежности - вероятность безотказной работы, которую называют функцией надежности.

В разные периоды эксплуатации насосов частота (ин­тенсивность) отказов разная (рис.1). Здесь три периода: I - приработки; II - нормальной эксплуатации; III - старения.

Природа высокой интенсивности отказов (период!) заклю­чается в неидеальности изготовления деталей и незамеченных дефектах.

Рис.1.Типичный график интенсивности отказов механизмов в процессе эксплуатации

Период внезапных отказов II неустраним, их интенсивность невелика до тех пор, пока износ деталей не достигает некото­рой величины - после чего наступает период старения III.

Для оценки параметров надежности насоса необходимо выбрать элемент, лимитирующий надежность. Для насосов такими элементами являются торцовые уплотнения (средняя наработка 3500 ч), щелевые уплотнения (6300 ч), подшипни­ки (12000 ч), валы (60000 ч). Главный резерв повышения па­раметров надежности насоса-повышение качества торцовых уплотнений.

Межремонтный ресурс насосного оборудования колеблет­ся в пределах 4000-8000 ч. Около 30% всех отказов падают на торцовые уплотнения валов, 15%--на подшипники, 9% - на маслосистему. Повышенная вибрация вызывает до 10% отказов. По вине персонала - до 12%.

Основной причиной снижения КПД насосов (до 3%) явля­ется износ щелевого уплотнения и рост перетока нефти из по­лости нагнетания во всасывающий патрубок.

Пагубно на состоянии насосов сказывается вибрация, при которых детали испытывают знакопеременные нагрузки и быстро разрушаются. В первую очередь разрушаются подшип­ники и соединительные муфты. Вибрация ослабляет крепле­ние узлов к фундаменту и узлов между собой.

Не существует машин с идеальным качеством изготовле­ния, поэтому невозможно ликвидировать все процессы, вызывающие вибрацию насосов. Центр масс ротора никогда не со­впадает с осью вращения вала. Сила механического дебалан­са является основным источником появления вынужденных гармоник вибрации роторных машин. Рост амплитуд отдель­ных гармоник вибрации используется в качестве диагности­ческого признака наличия дефектов. В 90% случаев аварий­ной остановки насоса этому предшествует резкое увеличение амплитуды вибраций.

Диагностический метод эксплуатации оборудования сво­дится к сопоставлению диагностического параметра с допус­тимым значением. Вибрационная диагностика основана на использовании среднеквадратичного значения виброскорос­ти (мм/с), например, крышки или корпуса подшипника.

Неразрушающий контроль (НК) позволяет обнаружить дефекты и проверить качество деталей без нарушения их пригодности к использованию по назначению. Перечислим несколько существующих методов неразрушающего конт­роля.

Визуально-оптический метод позволяет выявить относи­тельно крупные трещины, механические повреждения, оста­точную деформацию.

Капиллярный метод основан на увеличении контраста между дефектами и бездефектным материалом с помощью спе­циальных проникающих жидкостей.

Ультразвуковой контроль позволяет определить коорди­наты и площадь дефекта. Шуп должен плотно прилегать к по­верхности изделия.

Магнитная дефектоскопия основана на том, что дефекты изделий вызывают искажения магнитного поля, наведенного в изделии.

Гамма-дефектоскопия позволяет выявить скрытые дефек­ты с помощью портативных и маневренных приборов.

Важнейшими характеристиками методов неразрушающе­го контроля являются чувствительность и производитель­ность. Чувствительность определяется наименьшими разме­рами выявляемого дефекта. Вышеперечисленные методы по­зволяют обнаружить трещины раскрытием более 0,001 мм.

Гаммаграфический метод фиксирует трещины, глубина кото­рых составляет 5% от толщины детали.

Неразрушающий контроль валов насосов и электродвига­телей проводится с применением визуального, ультразвуково­го и магнитопорошкового методов при входном контроле, так и при эксплуатации и ремонте. При этом выявляются поверх­ностные и внутренние трещиноподобные дефекты, раковины и другие нарушения сплошности материала. НК проводится через каждые 10-16 тыс. ч наработки вала в зависимости от мощности и количества пусков насоса.

При выполнении послестроительной дефектоскопии про­изводится проверка:

Внутренней геометрии труб и состояние стенок после ук­ладки и засыпки трубопровода;

Сплошности изоляционного покрытия после его засыпки методом катодной поляризации.

Внутренняя геометрия (вмятины и изгибы) проверяется пропуском калибровочного устройства (снаряда-профилемера) в потоке воды или воздуха. Пропуск осуществляется по техно­логии пропуска очистного устройства.

Внутритрубная дефектоскопия проводится с целью обна­ружения трещин и других дефектов в стенках труб и сварных соединениях. Она проводится в потоке воздуха, природного газа или воды. Режим работы компрессорной или насосной станции должен быть согласован со скоростью перемещения снаряда (обычно используется скорость около 1,0 м/с). Приуве- личении скорости дефектоскопа он дает искаженные данные.

Обнаружение дефектов тела трубы осуществляется внутритрубной инспекцией с помощью снарядов-профилемеров и снарядов-дефектоскопов. Обобщенно их называю внутритрубными инспекционными снарядами (ВИС).

ВИС - это интеллектуальные инспекционные поршни, имеющие стальной корпус и полиуретановые диски. Внутри-трубные инспекционные снаряды имеют опорные ролики и средства обнаружения типа «трансмиттер». Известны случаи преодоления поршнями расстояний свыше 850 км без установ­ки промежуточных камер пуска-приема.

Снаряд-профилемер - это электронно-механический сна­ряд, оснащенный рычажными датчиками, которые измеряют проходное сечение, положение сварных швов, овальностей, вмятин и гофров. Искривление оси трубопровода фиксирует­ся индикатором поворота по взаимному положению осей двух секций профилемера. Пройденное снарядом расстояние опре­деляется с помощью измерительных колес. Привязка обнару­женных дефектов к определенным сечениям трассы осуществ­ляется с помощью специальных маркеров.

Для внутренней дефектоскопии применяются ультразву­ковые и магнитные снаряды-дефектоскопы (табл. 1). Ком­пьютеризированное диагностическое устройство использу­ет метод регистрации отраженных импульсных ультразву­ковых сигналов от внутренней и внешней поверхностей трубы. При этом датчик погружен в поток нефти. Толщина стенки определяется по времени запаздывания второго сиг­нала. Кроме того, сигнал отражается от несплошностей в металле трубы.

Таблица 1. Технические характеристики магнитных снарядов-дефектоскопов при диаметре трубопровода 1220 мм.

Для более полного обследования необходимо комплексное диагностирование, основанное на различных физических яв­лениях, потому что внутритрубные измерительные снаряды не выявляют напряженное состояние трубы.

С технической точки зрения техническая диагностика тру­бопроводов включает в себя следующие действия:

Обнаружение дефектов на трубопроводе;

Проверку изменения проектного положения трубопрово­да, его деформаций и напряженного состояния;

Оценку коррозионного состояния и защищенности трубо­проводов от коррозии;

Контроль технологических параметров транспорта про­дукта;

Интегральную оценку работоспособности трубопроводов, прогнозирование сроков службы и остаточного ресурса трубо­провода.

Система комплексной диагностики линейной части трубо­проводов базируется на использовании следующих методов контроля:

Статистических методов оценки эксплуатационных свойств элементов антикоррозийной защиты и интенсивности отказов;

Диагностики состояния металла труб с помощью внутритрубных инспекционных приборов, а также металлографичес­ких методов оценки;

Диагностики электрохимической и биологической актив­ности среды на потенциально опасных участках трассы;

Контрольной шурфовки и периодических гидравлических переиспытаний потенциально опасных участков трубопровода.

Выбор интервала времени между измерениями диагности­ческого параметра зависит от его чувствительности к измене­нию состояния объекта и от степени развития дефекта. Так процесс разрушения подшипника качения от начала появле­ния дефекта занимает 2-3 месяца.

Дополнительный дефектоскопический контроль включает идентификацию дефекта, обнаруженного инспекционным снарядом. Идентификация дефекта заключается в определе­нии типа, границ и размеров дефекта. Контроль проводится персоналом, прошедшим обучение и аттестацию по методам неразрушающего контроля.

Внешний осмотр сварного соединения . Внешним осмотром можно выявить наружные дефекты соединения: подрезы, незаверенные кратеры, наплывы, поверхностные поры, непровары, трещины, прожоги, наличие смещения сваренных деталей.

Перед осмотром сварной шов и прилегающие поверхности зачищают от окалины, шлака, брызг металла. Для осмотра можно применить лупу с 5-10-кратным увеличением.

Проверка сварных швов на непроницаемость . Проверка на непроницаемость проводится для емкостей, работающих под давлением жидкостей или газов, после проверки наружным осмотром и устранения дефектов.

Испытание гидростатическим давлением производится одним из двух способов.

Первый способ заключается в полном или частичном заполнении водой для открытых емкостей с временем выдержки 2...24 ч. Емкость считается выдержавшей испытание, если в течение установленного времени не будет пропусков воды и не снизится ее уровень.

Второй способ заключается в том, что закрытые сосуды (котлы, трубопроводы) заполняются водой с созданием избыточного контрольного (в 1,5...2 раза выше рабочего) давления. Изделие выдерживается под избыточным давлением 5 мин, потом давление снижают до рабочего, околошовную зону (на 15...20 мм от шва) обстукивают молотком с круглым бойком. Участки шва с течью в виде капель и запотевания отмечаются мелом. Вода сливается, а отмеченные участки шва вырубаются и завариваются, после этого изделие подвергается повторному испытанию.

Испытание давлением газа применяется для определения непроницаемости емкостей или трубопроводов, работающих под давлением.

При проверке испытуемая емкость герметизируется и в нее подают газ (воздух, азот, инертные газы) до получения в ней давления, заданного техническими условиями. Затем все сварные швы промазываются мыльным раствором (100 г мыла на 1 л воды). Признаком брака служит появление мыльных пузырей на промазанной поверхности.

Малогабаритные емкости при возможности герметизируют заглушками, погружают в ванну с водой и подают газ под давлением на 10...20% выше рабочего. Дефекты в швах определяют по появлению пузырьков газа в воде у швов.

Испытание аммиаком основано на свойстве некоторых индикаторов (водный раствор азотнокислой ртути или спирто-водный раствор фенолфталеина) изменять окраску под действием сжиженного аммиака. При этом способе контроля сварных швов тщательно очищается поверхность сварного соединения от шлака, ржавчины и масла. После этого на одну сторону шва укладывается бумажная лента или ткань, пропитанная индикатором, а с другой стороны нагнетают воздух с примесью 1% аммиака. Давление воздуха не должно превышать расчетного для испытуемой конструкции.

При наличии дефектов в шве аммиак окрашивает бумагу или ткань с индикатором в серебристо-черный цвет через 1...5 мин.

Изготовление и монтаж сварных конструкций производится в соответствии со Строительными нормами, правилами и техническими условиями. Существующие способы контроля сварных швов и изделий позволяют выявлять практически все дефекты их, встречающиеся в практике сварки. В зависимости от ответственности сварных конструкций применяют соответствующие способы контроля. Наиболее целесообразны комплексные испытания, включающие ряд параллельно используемых методов контроля. В табл.48 приведен Перечень методов контроля, обычно используемых для проверки качества различных сварных конструкций.

Наружный осмотр и проверка размеров шва. Пользуясь лупой с 10-20-кратным увеличением, можно заметить мелкие волосяные трещины и поры. Если предполагают наличие трещины, то исследуемый участок металла зачищают личным напильником, наждачной бумагой, промывают спиртом и травят 10%-ным раствором азотной кислоты до появления матовой поверхности. После осмотра металл зачищают наждачной бумагой и протирают денатурированным спиртом для удаления кислоты.

Подготовку кромок швов проверяют шаблонами или универсальными измерителями (см. гл. VIII). В необходимых случаях методы контроля указываются в технических условиях на изготовление сварных конструкций.

Испытание механических свойств наплавленного металла и сварного соединения. Для этих испытаний (ГОСТ 6996-66) одновременно со швом сваривают пробные пластины из того же металла и на тех же режимах. Из пластин изготовляют образцы установленной ГОСТ 6996-66 формы и размеров. Образцы подвергают испытаниям в лаборатории для определения механических свойств наплавленного металла или сварного соединения: временного сопротивления при разрыве, относительного удлинения, ударной вязкости, твердости.

Исследование макро- и микроструктуры. Макроструктуру металла, видимую невооруженным глазом, получают на отшлифованной поверхности образца, протравленной 10%-ным водным раствором азотной кислоты. Шлиф делают на образцах, вырезанных из шва или пробных пластин. Макроструктура выявляет непровары, шлаковые включения, раковины, поры, трещины, несплавление и пр.

Микроструктуру исследуют при увеличении в 100-1000 раз под микроскопом. Поверхность шлифа должна быть тщательно отполирована и протравлена 2-4%-ным спиртовым раствором азотной кислоты или другими специальными реактивами. Микроструктура позволяет обнаружить в шве перегрев и пережог металла, наличие окислов по границам зерен, изменение структуры и состава металла при сварке, микроскопические трещины и пр.



Исследование макро- и микроструктуры проводят в лаборатории и по их результатам судят о правильности режима сварки. Эти испытания позволяют также установить причины дефектов в шве и предупредить их появление в процессе сварки.

Гидравлические и пневматические испытания сосудов. Цель пневматических испытаний - проверка плотности шва. Гидравлические испытания, помимо проверки плотности швов, дают возможность определить прочность сосуда при наибольших нагрузках.

При гидравлическом испытании сосуд наполняют водой и с помощью насоса в нем создают давление, превышающее максимальное рабочее давление для данного изделия. Для сосудов, у которых рабочее давление менее 5 кгс/см 2 , величина пробного гидравлического давления берется на 50% больше величины рабочего давления, но не ниже 2 кгс/см 2 . При рабочем давлении свыше 5 кгс/см 2 пробное гидравлическое давление должно на 25% (но не менее чем на 3 кгс/см 2) превышать рабочее давление.

Под пробным давлением сосуд выдерживают 5 мин. Затем давление снижают до рабочего и швы обстукивают на расстоянии 15-20 мм от кромок закругленным молотком весом 1 кГ, после чего швы тщательно осматривают. Места, в которых обнаружены течь или потение, отмечают мелом и после снятия давления вырубают или удаляют поверхностной резкой и вновь заваривают.

Пневматическое испытание выполняется сжатым воздухом только при рабочем давлении сосуда. Плотность швов проверяют, обмазывая их мыльным раствором или погружая в воду, если это позволяют габариты сосуда. В местах пропуска воздуха появляются пузыри. В целях безопасности пневматическое испытание производят только после предварительного гидравлического испытания сосуда.

Проверка плотности шва. Плотность шва проверяют керосином. Шов с одной стороны обмазывают мелом, разведенным на воде. После высыхания мела шов с обратной стороны смачивают керосином. При наличии неплотностей, пор и трещин керосин просачивается через них и на меловой окраске появляются желтые пятна. Этим способом проверяют швы резервуаров, не работающие под давлением.

Плотность швов проверяют и химическим методом (по способу С. Т. Назарова). Для этого швы снаружи оклеивают полосками бумаги или прокладывают по ним марлевые бинты; бумага и бинты пропитываются предварительно 5%-ным водным раствором азотнокислой ртути или фенолфталеина. В испытуемый сосуд под рабочим давлением накачивают воздух, содержащий примесь 1% аммиака. Проникая через неплотности и поры шва, аммиак вызывает потемнение полосок бумаги или бинтов в месте расположения дефекта.

Для испытания плотности швов днищ резервуаров применяют следующий способ. Пространство под днищем герметизируют плотным водонепроницаемым грунтом и под днище впускают аммиак из баллонов в смеси с воздухом, создавая под днищем давление 0,8-1,0 кгс/см 2 . Швы с другой стороны днища тщательно зачищают и поливают 10%-ным спиртоводным раствором фенолфталеина, имеющим вид молока. В местах неплотностей аммиак проникает через шов и окрашивает раствор в красный цвет. Следует иметь ввиду, что остатки шлака на шве, обладая свойствами щелочи, также могут вызвать покраснение раствора, что не является признаком неплотности шва. Данный способ не позволяет также выявить мелкие загрязненные дефекты шва.

Применяют также вакуумный способ проверки плотности швов, например, днищ резервуаров. Шов смачивают мыльным раствором и на проверяемый участок устанавливают вакуумную камеру с крышкой из прозрачного плексигласа. Камера не имеет дна и уплотняется на поверхности листа резиновой прокладкой. При откачке вакуум-насосом воздуха из камеры в ней появляются пузыри в местах расположения дефектов шва (трещин, пор и др.).

Плотность сварных и паяных швов проверяют также с помощью гелиевых и галоидных течеискателей. При проверке гелиевыми течеискателями в контролируемом сосуде создают вакуум, а швы снаружи обдувают смесью гелия с воздухом. При неплотности в шве гелий проникает в сосуд, а затем поступает в течеискатель, который обнаруживает присутствие гелия в сосуде. Другой способ состоит в том, что в контролируемый сосуд подают под давлением гелий, а специальным щупом, соединенным с вакуум-насосом и камерой течеискателя проводят по швам и улавливают протекание гелия из сосуда. Применяют гелиевые течеискатели ПТИ-4А и ПТИ-6. Течеискатель ПТИ-6 имеет высокую чувствительность, равную 10 -7 см 3 мм рт. ст./сек.

При использовании галоидных течеискателей внутри контролируемого сосуда создают избыточное давление и вводят галоидный газ (фреон-12), который проникает через неплотности шва и улавливается вакуумным щупом течеискателя.

Галоидный течеискатель ВАГТИ-4 имеет чувствительность меньшую, чем гелиевый, равную 10 -4 -10 -5 см 3 мм рт. ст./сек. Галоидные течеискатели нельзя применять в цехах, где производят сварку и пайку с флюсами, содержащими фтор и хлор, так как присутствие этих газов в воздухе цеха вызывает ложные сигналы в течеискателе.

С помощью течеискателей можно обнаруживать микроскопические течи, которые не могут быть выявлены другими методами. Этот способ применяется при проверке плотности швов ответственных изделий (например, сосудов и трубопроводов с вакуумной теплоизоляцией для хранения и транспортирования сжиженных газов - кислорода, азота, водорода).

Просвечивание швов. Просвечиванием обнаруживают внутренние дефекты - трещины, непровары, поры, шлаковые включения. Этим способом проверяют швы ответственных изделий, например сосудов, работающих под давлением. Для просвечивания применяют рентгеновские лучи или излучение радиоактивных элементов (гамма-лучи). Эти лучи, не видимые человеческим глазом, способны проникать через толщу металла, действуя на светочувствительную фотопленку, приложенную к шву с обратной стороны.

В тех местах шва, где имеется дефект, поглощение лучей металлом будет меньше, и они окажут более сильное воздействие на чувствительную к лучам эмульсию пленки. Поэтому в данном месте на пленке после проявления будет темное пятно, по размерам и форме соответствующее имеющемуся дефекту. Снимок шва на пленке называется рентгенограммой (или гаммограммой) шва. Обычно просвечивают 10-25% общей длины швов. В особо ответственных конструкциях просвечивают все швы.

Для просвечивания применяют рентгеновские аппараты, состоящие из специального трансформатора с выпрямителем и особой лампы - рентгеновской трубки.

В качестве источников гамма-лучей используют следующие радиоактивные вещества:

Кобальт-60 обладает наиболее жесткими, сильно проникающими лучами, поэтому применяется для просвечивания тяжелых металлов большой толщины. Остальные изотопы имеют значительно более мягкое излучение и используются для меньших толщин. Наиболее мягкое (приближающееся к рентгеновскому) излучение дает тулий-170, используемый для просвечивания малых толщин и легких сплавов.

Определение дефектов при просвечивании гамма-лучами металла толщиной хуже, чем при просвечивании рентгеновскими лучами. Поэтому гамма-лучи используют только в тех случаях, когда рентгеновские лучи применить нельзя из-за формы изделий, малой доступности шва или слишком большой толщины металла.

Однако просвечивание гамма-лучами имеет и ряд преимуществ перед рентгеновским, а именно: обеспечивается возможность просвечивания труднодоступных мест на изделии; возможность просвечивания швов одновременно в нескольких точках; возможность контроля кольцевых швов из одной точки; безотказность и длительность (несколько лет) работы радиоактивных препаратов; простота, невысокая стоимость и легкость транспортировки просвечивающей установки. Просвечивание рентгеновскими и гамма-лучами выполняет только специально обученный персонал. Радиоактивное и гамма-излучение опасно для человеческого организма при длительном воздействии на него. Поэтому при просвечивании применяются специальные меры защиты обслуживающего персонала и окружающих лиц от действия этих лучей (свинцовые контейнеры, экраны и пр.).

Схемы способов просвечивания сварных швов показаны на рис. 197. На рис. 198, а показан переносный защитный контейнер, а на рис. 198, б - ампула для радиоактивного вещества.

Для рентгеновского просвечивания применяют промышленные установки РУП-120-5 и РУП-200-5. Для просвечивания гамма-лучами - установки (дефектоскопы) ГУП-Со-0,5-1; ГУП-Со-5-1 и ГУП-Со-50. Используются также дефектоскопы РИД-21-Г (рис. 199) конструкции Института радиационной техники, имеющие облегченные контейнеры не из свинца, а из вольфрамового сплава.

ГОСТ 7512-55 установлены условные обозначения дефектов швов, обнаруживаемых при расшифровке рентгено-и гаммограмм: П - газовые включения (поры); Ш - шлаковые включения; Н - непровары; НС - непровар сплошной; Тп - трещины поперечные; Тпр - трещины продольные; Тр - трещины радиальные.

По характеру распределения дефекты делятся на следующие группы: А - отдельные дефекты; Б - цепочка дефектов; В - скопление дефектов. Например, запись на рентгенограмме длиной 100 мм- ПБ-1-15, Тп-4-1, Ш-0, Н-0 означает, что на участке шва 100 мм выявлены: цепочка пор размером 1 мм на протяжении 15 мм; одна поперечная трещина длиной 4 мм; шлаковых включений и непроваров не обнаружено.

Ультразвуковой метод контроля швов. Ультразвуковой метод контроля основан на способности высокочастотных (свыше 20 000 гц) колебаний, не воспринимаемых человеческим ухом, проникать в металл шва и отражаться от поверхности пор, трещин и других дефектов. Ультразвуковые колебания получают при помощи пластинки из кварца или титаната бария (пьезодатчика). Когда к такой пластинке подводят переменный ток высокой частоты (0,8-2,5 Мгц), то она начинает излучать пучки ультразвуковых колебаний, направленных под прямым углом к ее большим граням. Эта же пластинка при попадании на нее таких колебаний извне преобразует их в переменный электрический ток. При ультразвуковом контроле пьезодатчик посылает короткие импульсы упругих колебаний (длительностью 0,5-1 мксек), разделенные более продолжительными паузами (1-5 мксек).

Эти колебания проникают в металл и, если встречают на своем пути дефект, то отражаются от него и воспринимаются вновь той же (или второй) пластинкой пьезодатчика, вызывая отклонение луча на экране осциллографа. По времени от посылки до приема сигнала можно определять не только наличие, но и глубину залегания дефекта. Пьезодатчик помещен в призматическую искательную головку, называемую щупом. В процессе контроля щуп (или два щупа - посылающий и принимающий сигналы) перемещают вдоль шва, сообщая возвратно-поступательные движения.

Так отыскивают дефекты, расположенные в различных зонах шва. Схема ультразвукового дефектоскопа дана на рис. 200. На экране осциллографа 4 первоначальный сигнал дает пик а; обратный сигнал, отраженный от противоположной стороны листа, дает пик е. Если в шве имеется дефект, то часть пучка колебаний отражается от этого дефекта и дает на экране промежуточный пик б. Расстояние между пиками а и б позволяет определить глубину залегания дефекта.

На рис. 201 показаны внешний вид дефектоскопа и посылаемые им сигналы.

Промышленностью выпускаются ультразвуковые дефектоскопы УЗД-7, УЗД-НИИМ-5, ДУК-11ИМ и ДУК-13ИМ для выявления внутренних дефектов (трещин, пор, расслоений, непроваров и т. п.) площадью 2 мм 2 и более. При наличии такого дефекта загорается лампочка, появляется звук в наушниках телефона и возникает импульс на экране электроннолучевой трубки. Прибор имеет 14 искательных головок. Контролируемая толщина металла от 8 до 750 мм, частота 2,5 Мгц. Приборы ДУК-13ИМ на полупроводниках выпускаются в портативном исполнении.

Ультразвуковой метод может применяться при толщине металла свыше 3-4 мм. При толщине швов менее 8-10 мм выявление дефектов этим методом требует высокой квалификации контролера. Поэтому ультразвуковой контроль обычно используют для металла толщиной 12-15 мм и более; он особенно эффективен при толщине металла 30-50 мм и выше. Для лучшего прохождения колебаний через поверхность металла, прилегающую к шву, на нее наносят тонкий слой трансформаторного, турбинного или машинного масла или глицерина. В настоящее время ультразвуковой метод контроля является наиболее распространенным. С его помощью обычно выявляют местонахождение скрытого дефекта, а затем шов в данном месте просвечивают рентгеновскими или гамма-лучами для определения характера и размеров дефекта.

Магнитный метод. Этот способ контроля основан на изменении направления линий магнитного потока около места расположения дефекта, который они огибают вследствие меньшей магнитной проницаемости дефекта по сравнению с целым металлом (рис. 202). По способу определения места залегания дефекта существуют два способа контроля: порошковый (сухой или эмульсионный) и индукционный. При сухом способе порошок закиси-окиси железа (окалины) с частицами размером 5-10 мк наносят на поверхность шва с помощью сита или распылителя. При эмульсионном способе шов покрывают жидкой смесью (эмульсией) из указанного порошка, разведенного в керосине или трансформаторном масле. Затем изделие намагничивают с помощью постоянного или переменного сварочного тока до 200 а от преобразователя или трансформатора. Ток пропускают по обмотке, имеющей несколько витков, окружающих изделие. Под действием возникающего в изделии магнитного поля частицы железного порошка располагаются гуще около места с дефектом: непроваром, трещинами. Поскольку этим способом выявляются только дефекты, расположенные перпендикулярно направлению магнитных линий, то каждый участок нужно проверять дважды: один раз намагничивая его поперек, а второй - вдоль шва.

При индукционном способе применяют дефектоскоп системы К. К. Хренова и С. Т. Назарова (рис. 203). В тот момент, когда искателем 1 проводят над местом расположения дефекта, в нем индуктируется ток, который затем проходит в усилитель 2 и дает звуковой сигнал в телефоне 3; при этом одновременно загорается сигнальная лампа.

Магнитным методом можно выявить в сварных швах изделий из стали и чугуна с толщиной стенки от 6 до 25 мм мелкие внутренние трещины и непровары на глубине до 5-6 мм. Дефекты на большей глубине, а также поры и шлаковыключения этим методом не определяются. Магнитный метод (так же, как ультразвуковой) служит для предварительного определения наличия дефектов и места их залегания в сварных швах, затем эти участки просвечивают для установления размеров дефекта.

Магнитографический метод. Этот метод разработан и внедрен институтом ВНИИСТ для контроля сварных швов стальных трубопроводов. Он является усовершенствованной разновидностью магнитного метода.

Обнаруженные дефекты отмечаются на ферромагнитной ленте, подобной применяемой для звукозаписывающих установок. Вследствие неоднородности металла шва в месте расположения дефекта изменяется его магнитная проницаемость, поэтому меняется степень намагничивания ленты на этом участке.

Наличие дефекта, например трещины, увеличивает остаточную намагниченность ленты. Если затем ленту пропустить через аппарат для воспроизведения магнитной записи, а получаемые импульсы передавать на осциллограф, то по величине и форме отклонения луча на экране осциллографа можно судить о величине и характере дефекта шва. Магнитографический метод контроля достаточно прост и точен, им можно проверять швы, находящиеся в различных пространственных положениях, он безвреден для обслуживающего персонала. Этот метод может применяться для проверки стали толщиной не более 12 мм. На рис. 204 схематически показан этот способ контроля.

Для контроля сварных соединений трубопроводов и резервуаров применяются магнитографические дефектоскопы (например, типа МД-11). На экране дефектоскопа появляется изображение участков шва с дефектами. Прибор выявляет: макротрещины вдоль оси шва и под некоторым углом к ней в различных участках по сечению шва; непровары глубиной 4-5% от толщины металла; цепочки шлаковых включений и пор, а также отдельные шлаковые включения и газовые поры размером 4-5% от толщины металла.

Контроль с помощью электронно-оптического преобразователя. Схема устройства электронно-оптического преобразователя показана на рис. 205. Шов 1 просвечивается рентгеновскими лучами, которые, пройдя стеклянную стенку вакуумной трубки, вызывают свечение слоя 3 флуоресцирующего вещества, нанесенного на алюминиевый экран 2. На экране возникает изображение шва. Непосредственно на слой 3 флуоресцирующего вещества нанесен фотокатод 4. Свечение экрана выбивает электроны фотокатода, число которых в каждой его точке пропорционально яркости свечения экрана и интенсивности лучей, прошедших через шов. Выбрасываемые катодом электроны ускоряются высоким напряжением от внешнего источника питания и попадают на анод - флуоресцентный экран 5, вызывая его свечение яркостью в 1000 раз большей, чем у экрана 2.

На экране 5 возникает уменьшенное изображение шва, которое наблюдатель 7 рассматривает через оптическую увеличительную линзу 6. Этим методом можно просматривать все сварные швы, выявляя скрытые в них дефекты.

Контроль сварных швов просвечиванием рентгеновскими лучами с применением электронно-оптических преобразователей позволяет в несколько раз увеличить производительность этой операции и автоматизировать ее. На рис. 206 показана схема автоматизированного способа такого контроля с применением телевизионных экранов для наблюдения дефектов сварки. Максимальная чувствительность метода контроля при помощи электронно-оптических преобразователей достигается при определении дефектов в легких сплавах.

Испытание швов на межкристаллитную коррозию. На межкристаллитную коррозию испытывают только изделия, сварные соединения которых подвергаются действию агрессивных сред. Методы и порядок контроля регламентируются ГОСТ 6032-58.

Цветная дефектоскопия. Этот метод применяется для выявления поверхностных дефектов швов и околошовной зоны: трещин, пор, шлаковых включений, непроваров, выходящих на поверхность шва. При помощи цветной дефектоскопии можно обнаружить трещины глубиной свыше 0,1 мм и шириной до 0,001 мм на любых металлах, а также выявить участки, пораженные межкристаллитной и ножевой коррозией. Сварное соединение тщательно очищают и обезжиривают бензином Б-70 или ацетоном. После просушки наносят в два слоя краску, состава: керосин Т-1 или Т-2-500 см 3 , скипидар - 500 см 3 и анилиновый краситель «Судан-4» темно-красного цвета- 10 г. После высыхания краски контролируемый участок покрывают белой краской состава: каолина - 500 см 3 , воды - 1000 см 3 . Проникшая в дефекты красная краска адсорбируется слоем белого покрытия и дает на нем изображение дефекта, если после высыхания покрытия протереть шов ветошью,

Общие сведения и организация контроля

По ГОСТ 15467-79 качество продукции есть совокупность свойств продукции, обусловливающих ее пригодность удовлетво­рять определенные потребности в соответствии с ее назначением. Качество сварных изделий зависит от соответствия материала тех­ническим условиям, состояния оборудования и оснастки, правиль­ности и уровня отработки технологической документации, соблюдения технологической дисциплины, а также квалификации работающих. Обеспечить высокие технические и эксплуатацион­ные свойства изделий можно только при условии точного выпол­нения технологических процессов и их стабильности. Особую роль здесь играют различные способы объективного контроля как про­изводственных процессов, так и готовых изделий. При правильной организации технологического процесса контроль должен быть его неотъемлемой частью. Обнаружение дефектов служит сигналом не только к отбраковке продукции, но и оперативной корректировке технологии.

Сварные конструкции контролируют на всех этапах их изготов­ления. Кроме того, систематически проверяют приспособления и оборудование. При предварительном контроле подвергаются про­верке основные и вспомогательные материалы, устанавливается их соответствие чертежу и техническим условиям.

После заготовительных работ детали подвергают чаще всего наружному осмотру, т.е. проверяют внешний вид детали, качество поверхности, наличие заусенцев, трещин, забоин и т.п., а также измеряют универсальными и специальными инструментами, шаб­лонами, с помощью контрольных приспособлений. Особенно тща­тельно контролируют участки, подвергающиеся сварке. Профиль кромок, подготовленных под сварку плавлением, проверяют спе­циальными шаблонами, а качество подготовки поверхности - с помощью оптических приборов или специальными микрометрами.

Во время сборки и прихватки проверяют расположение деталей друг относительно друга, величину зазоров, расположение и размер прихваток, отсутствие трещин, прожогов и других дефектов в местах прихваток и т.д. Качество сборки и прихватки определяют главным образом наружным осмотром и обмером.

Наиболее ответственным моментом является текущий контроль выполнения сварки. Организация контроля сварочных работ может производиться в двух направлениях: контролируют сами процессы сварки либо полученные изделия.

Контроль процессов позволяет предотвратить появление систе­матических дефектов и особенно эффективен при автоматизиро­ванной сварке (автоматическая и механизированная дуговая, электрошлаковая и др.). Существуют следующие способы контроля сварочных процессов.

Контроль по образцам технологических проб. В этом случае периодически изготовляют образцы соединений из материала той же марки и толщины, что и свариваемое изделие, и подвергают их всесторонней проверке: внешнему осмотру, испытаниям на проч­ность соединений, просвечиванию рентгеновскими лучами, метал­лографическому исследованию и т.д. К недостаткам такого способа контроля следует отнести некоторое различие между образцом и изделием, а также возможность изменения сварочных условий с момента изготовления одного образца до момента изготовления следующего.

Контроль с использованием обобщающих параметров, имеющих прямую связь с качеством сварки, например использование дила­тометрического эффекта в условиях точечной контактной сварки. Однако в большинстве случаев сварки плавлением трудно или не всегда удается выявить наличие обобщающего параметра, позволя­ющего достаточно надежно контролировать качество соединений.

Контроль параметров режима сварки. Так как в большинстве случаев определенных обобщающих параметров для процессов сварки плавлением нет, то на практике контролируют параметры, непосредственно определяющие режим сварки. При дуговой сварке такими параметрами в первую очередь являются сила тока, дуговое напряжение, скорость сварки, скорость подачи проволоки и др. Недостаток такого подхода заключается в необходимости контро­лирования многих параметров, каждый из которых в отдельности не может характеризовать непосредственно уровень качества полу­чаемых соединений.

Контроль изделий производят пооперационно или после окон­чания изготовления. Последним способом обычно контролируют несложные изделия. Качество выполнения сварки на изделии оце­нивают по наличию наружных или внутренних дефектов. Развитие физики открыло большие возможности для создания высокоэффек­тивных методов дефектоскопии с высокой разрешающей способ­ностью, позволяющих проверять без разрушения качество сварных соединений в ответственных конструкциях.

В зависимости от того, нарушается или не нарушается це­лостность сварного соединения при контроле, различают неразрушающие и разрушающие методы контроля.

Дефекты сварных соединений и причины их возникновения

В процессе образования сварных соединений в металле шва и зоне термического влияния могут возникать различные отклонения от установленных норм и технических требований, приводящие к ухудшению работоспособности сварных конструкций, снижению их эксплуатационной надежности, ухудшению внешнего вида из­делия. Такие отклонения называют дефектами. Дефекты сварных соединений различают по причинам возникновения и месту их расположения (наружные и внутренние). В зависимости от причин возникновения их можно разделить на две группы. К первой группе относятся дефекты, связанные с металлургическими и тепловыми явлениями, происходящими в процессе образования, формирования и кристаллизации сварочной ванны и остывания сварного соединения (горячие и холодные трещины в металле шва и околошовной зоне, поры, шлаковые включения, неблагоприятные изменения свойств металла шва и зоны термического влияния).

Ко второй группе дефектов, которые называют дефектами фор­мирования швов, относят дефекты, происхождение которых связано в основном с нарушением режима сварки, неправильной подготов­кой и сборкой элементов конструкции под сварку, неисправностью оборудования, недостаточной квалификацией сварщика и другими нарушениями технологического процесса. К дефектам этой группы относятся несоответствия швов расчетным размерам, непровары, подрезы, прожоги, наплывы, незаваренные кратеры и др. Виды дефектов приведены на рис. 1. Дефектами формы и размеров сварных швов являются их неполномерность, неравномерные ши­рина и высота, бугристость, седловины, перетяжки и т.п.


Рисунок 1 - Виды дефектов сварных швов:

а - ослабление шва. б - неравномерность ширины, в - наплыв, г - подрез, с - непровар, с - трещины и поры, ж - внутренние трещины и поры, з - внутренний непровар, и - шлаковые включения

Эти дефекты снижают прочность и ухудшают внешний вид шва. При­чины их возникновения при механизированных способах сварки - колебания напряжения в сети, проскальзывание проволоки в пода­ющих роликах, неравномерная скорость сварки из-за люфтов в механизме перемещения сварочного автомата, неправильный угол наклона электрода, протекание жидкого металла в зазоры, их неравномерность по длине стыка и т.п. Дефекты формы и размеров швов косвенно указывают на возможность образования внутренних дефектов в шве.

Наплывы образуются в результате натекания жидкого металла на поверхность холодного основного металла без сплавления с ним. Они могут быть местными - в виде отдельных застывших капель, а также иметь значительную протяженность вдоль шва. Чаще всего наплывы образуются при выполнении горизонтальных сварных швов на вертикальной плоскости. Причины образования наплы­вов - большой сварочный ток, слишком длинная дуга, неправиль­ный наклон электрода, большой угол наклона изделия при сварке на спуск. При выполнении кольцевых швов наплывы образуют­ся при недостаточном или излишнем смещении электрода с зенита. В местах наплывов часто могут выявляться непровары, трещины и др.

Подрезы представляют собой продолговатые углубления (канав­ки), образовавшиеся в основном металле вдоль края шва. Они возникают в результате большого сварочного тока и длинной дуги. Основной причиной подрезов при выполнении угловых швов яв­ляется смещение электрода в сторону вертикальной стенки. Это вызывает значительный разогрев металла вертикальной стенки и его стекание при оплавлении на горизонтальную стенку. Подрезы приводят к ослаблению сечения сварного соединения и концент­рации в нем напряжений, что может явиться причиной разрушения.

Прожоги - это сквозные отверстия в шве, образованные в результате вытекания части металла ванны. Причинами их образо­вания могут быть большой зазор между свариваемыми кромками, недостаточное притупление кромок, чрезмерный сварочный ток, недостаточная скорость сварки. Наиболее часто прожоги образуют­ся при сварке тонкого металла и выполнении первого прохода многослойного шва. Прожоги могут также образовываться в резуль­тате недостаточно плотного поджатая сварочной подкладки или флюсовой подушки.

Непроваром называют местное несплавление кромок основного металла или несплавление между собой отдельных валиков при многослойной сварке. Непровары уменьшают сечение шва и вызы­вают концентрацию напряжений в соединении, что может резко снизить прочность конструкции. Причины образования непроваров - плохая зачистка металла от окалины, ржавчины и загрязне­ний, малый зазор при сборке, большое притупление, малый угол скоса кромок, недостаточный сварочный ток, большая скорость сварки, смещение электрода от центра стыка. Непровары выше допустимой величины подлежат удалению и последующей заварке.

Трещины , также как и непровары, являются наиболее опасными дефектами сварных швов. Они могут возникать как в самом шве, так и в околошовной зоне и располагаться вдоль или поперек шва. По своим размерам трещины могут быть макро- и микроскопиче­скими. На образование трещин влияет повышенное содержание углерода, а также примеси серы и фосфора.

Шлаковые включения , представляющие собой вкрапления шла­ка в шве, образуются в результате плохой зачистки кромок деталей и поверхности сварочной проволоки от оксидов и загрязнений. Они возникают при сварке длинной дугой, недостаточном сварочном токе и чрезмерно большой скорости сварки, а при многослойной сварке - недостаточной зачистке шлаков с предыдущих слоев. Шлаковые включения ослабляют сечение шва и его прочность.

Газовые поры появляются в сварных швах при недостаточной полноте удаления газов при кристаллизации металла шва. Причины пор - повышенное содержание углерода при сварке сталей, загряз­нения на кромках, использование влажных флюсов, защитных газов, высокая скорость сварки, неправильный выбор присадочной проволоки. Поры могут располагаться в шве отдельными группами, в виде цепочек или единичных пустот. Иногда они выходят на поверхность шва в виде воронкообразных углублений, образуя так называемые свищи. Поры также ослабляют сечение шва и его прочность, сквозные поры приводят к нарушению герметичности соединений.

Микроструктура шва и зоны термического влияния в значитель­ной степени определяет свойства сварных соединений и характе­ризует их качество.

К дефектам микроструктуры относят следующие: повышенное содержание оксидов и различных неметаллических включений, микропоры и микротрещины, крупнозернистость, перегрев, пе­режог металла и др. Перегрев характеризуется чрезмерным укрупнением зерна и огрублением структуры металла. Более опасен пережог - наличие в структуре металла зерен с окисленными границами. Такой металл имеет повышенную хрупкость и не поддаетсяисправлению. Причиной пережога является плохая защита сварочной ванны при сварке, а также сварка на чрезмерно большой силе тока.

Методы неразрушающего контроля сварных соединений

К неразрушающим методам контроля качества сварных сое­динений относят внешний осмотр, контроль на непроницаемость (или герметичность) конструкций, контроль для обнаружения де­фектов, выходящих на поверхность, контроль скрытых и внутренних дефектов.

Внешний осмотр и обмеры сварных швов - наиболее простые и широко распространенные способы контроля их качества. Они являются первыми контрольными операциями по приемке готового сварного узла или изделия. Этим видам контроля подвергают все сварные швы независимо от того, как они будут испытаны в дальнейшем.

Внешним осмотром сварных швов выявляют наружные дефек­ты: непровары, наплывы, подрезы, наружные трещины и поры, смещение свариваемых кромок деталей и т.п. Визуальный осмотр производят как невооруженным глазом, так и с применением лупы с увеличением до 10 раз.

Обмеры сварных швов позволяют судить о качестве сварного соединения: недостаточное сечение шва уменьшает его прочность, слишком большое - увеличивает внутренние напряжения и дефор­мации. Размеры сечения готового шва проверяют по его параметрам в зависимости от типа соединения. У стыкового шва проверяют его ширину, высоту, размер выпуклости со стороны корня шва, в угловом - измеряют катет. Замеренные параметры должны соот­ветствовать ТУ или ГОСТам. Размеры сварных швов контролируют обычно измерительными инструментами или специальными шаб­лонами.

Внешний осмотр и обмеры сварных швов не дают возможности окончательно судить о качестве сварки. Они устанавливают только внешние дефекты шва и позволяют определить их сомнительные участки, которые могут быть проверены более точными способами.

Контроль непроницаемости сварных швов и соединений. Сварные швы и соединения ряда изделий и сооружений должны отвечать требованиям непроницаемости (герметичности) для различных жидкостей и газов. Учитывая это, во многих сварных конструкциях (емкости, трубопроводы, химическая аппаратура и" т.д.) сварные швы подвергают контролю на непроницаемость. Этот вид контроля производится после окончания монтажа или изготовления конст­рукции. Дефекты, выявленные внешним осмотром, устраняются до начала испытаний. Непроницаемость сварных швов контролируют следующими методами: капиллярным (керосином), химическим (аммиаком), пузырьковым (воздушным или гидравлическим давле­нием), вакуумированием или газоэлектрическими течеискателями.

Контроль керосином основан на физическом явлении капиллярности, которое заключается в способности керосина подниматься по капиллярным ходам - сквозным порам и трещинам. В процессе испытания сварные швы покрываются водным раство­ром мела с той стороны, которая более доступна для осмотра и выявления дефектов. После высушивания окрашенной поверхности с обратной стороны шов обильно смачивают керосином. Неплот­ности швов выявляют по наличию на меловом покрытии следов проникшего керосина. Появление отдельных пятен указывает на поры и свищи, полос - сквозных трещин и непроваров в шве. Благодаря высокой проникающей способности керосина обнару­живаются дефекты с поперечным размером 0,1 мм и менее.

Контроль аммиаком основан на изменении окраски некоторых индикаторов (раствор фенолфталеина, азотнокислой ртути) под воздействием щелочей. В качестве контролирующего реагента применяется газ аммиак. При испытании на одну сторону шва укладывают бумажную ленту, смоченную 5%-ным раствором индикатора, а с другой стороны шов обрабатывают смесью аммиака с воздухом. Аммиак, проникая через неплотности сварного шва, окрашивает индикатор в местах залегания дефектов.

Контроль воздушным давлением (сжатым воз­духом или другими газами) подвергают сосуды и трубопроводы, работающие под давлением, а также резервуары, цистерны и т.п. Это испытание проводят с целью проверки общей герметичности сварного изделия. Малогабаритные изделия полностью погружают в ванну с водой, после чего в него подают сжатый воздух под давлением, на 10 - 20% превышающим рабочее. Крупногабаритные конструкции после подачи внутреннего давления по сварным швам покрывают пенным индикатором (обычно раствор мыла). О нали­чии неплотностей в швах судят по появлению пузырьков воздуха. При испытании сжатым воздухом (газами) следует соблюдать пра­вила безопасности.

Контроль гидравлическим давлением при­меняют при проверке прочности и плотности различных сосудов, котлов, паро-, водо- и газопроводов и других сварных конструкций, работающих под избыточным давлением. Перед испытанием свар­ное изделие полностью герметизируют водонепроницаемыми за­глушками. Сварные швы с наружной поверхности тщательно просушивают обдувом воздухом. Затем изделие заполняют водой под избыточным давлением, в 1,5 - 2 раза превышающим рабочее, и выдерживают в течение заданного времени. Дефектные места определяют по проявлению течи, капель или увлажнению поверх­ности швов.

Вакуумному контролю подвергают сварные швы, которые невозможно испытать керосином, воздухом или водой и доступ к которым возможен только с одной стороны. Его широко применяют при проверке сварных швов днищ резерву­аров, газгольдеров и других листовых конструкций. Сущ­ность метода заключается в создании вакуума на одной стороне контролируемого участка сварного шва и реги­страции на этой же стороне шва проникновения воздуха через имеющиеся неплотно­сти. Контроль ведется с по­мощью переносной вакуум-камеры, которую устанавли­вают на наиболее доступную сторону сварного соедине­ния, предварительно смо­ченную мыльным раствором (рис. 2).

Рисунок 2 - Вакуумный контроль шва: 1 – вакуумметр, 2 - резиновое уплотнение, 3 - мыльный раствор, 4 - камера.

В зависимости от формы контролируемого изделия и типа соединения могут приме­няться плоские, угловые и сферические вакуум-камеры. Для созда­ния вакуума в них применяют специальные вакуум-насосы.

Люминесцентный контроль и контроль методом красок , называемый также капиллярной дефек­тоскопией, проводят с помощью специальных жидкостей, которые наносят на контролируемую поверхность изделия. Эти жидкости, обладающие большой смачивающей способностью, проникают в мельчайшие поверхностные дефекты - трещины, поры, непровары. Люминесцентный контроль основан на свойстве некоторых веществ светиться под действием ультрафиолетового облучения. Перед контролем поверхности шва и околошовной зоны очищают от шлака и загрязнений, на них наносят слой проникающей жид­кости, которая затем удаляется, а изделие просушивается. Для обнаружения дефектов поверхность облучают ультрафиолетовым излучением - в местах дефектов следы жидкости обнаруживаются по свечению.

Контроль методом красок заключается в том, что на очищенную поверхность сварного соединения наносится смачи­вающая жидкость, которая под действием капиллярных сил прони­кает в полость дефектов. После ее удаления на поверхность шва наносится белая краска. Выступающие следы жидкости обозначают места расположения дефектов.

Контроль газоэлектрическими течеискателям и применяют для испытания ответственных сварных конструкций, так как такие течеискатели достаточно сложны и дорогостоящи. В качестве газа-индикатора в них используется гелий. Обладая высокой проникающей способностью, он способен про­ходить через мельчайшие несплошности в металле и регистрируется течеискателем. В процессе контроля сварной шов обдувают или внутренний объем изделия заполняют смесью газа-индикатора с воздухом. Проникающий через неплотности газ улавливается щу­пом и анализируется в течеискателе.

Для обнаружения скрытых внутренних дефектов применяют следующие методы контроля.

Магнитные методы контроля основаны на об­наружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или поме­щая внутрь соленоида. Требуемый магнитный поток можно создать и пропусканием тока по виткам (3 - 6 витков) сварочного провода, наматываемого на контролируемую деталь. В зависимости от спо­соба обнаружения потоков рассеяния различают следующие методы магнитного контроля: метод магнитного порошка, индукционный и магнитографический. При методе магнитного порошка на повер­хность намагниченного соединения наносят магнитный порошок (окалина, железные опилки) в сухом виде (сухой способ) или суспензию магнитного порошка в жидкости (керосин, мыльный раствор, вода - мокрый способ). Над местом расположения дефек­та создадутся скопления порошка в виде правильно ориентирован­ного магнитного спектра. Для облегчения подвижности порошка изделие слегка обстукивают. С помощью магнитного порошка выявляют трещины, невидимые невооруженным глазом, внутрен­ние трещины на глубине не более 15 мм, расслоение металла, а также крупные поры, раковины и шлаковые включения на глубине не более 3 - 5 мм. При индукционном методе маг­нитный поток в изделии наводят электромагнитом переменного то­ка. Дефекты обнаруживают с по­мощью искателя, в катушке кото­рого под воздействием поля рассе­яния индуцируется ЭДС, вызы­вающая оптический или звуковой сигнал на индикаторе. При магнитографическом мето­де (рис. 3) поле рассеяния фик­сируется на эластичной магнитной ленте, плотно прижатой к поверх­ности соединения. Запись воспроизводится на магнитографическом дефектоскопе. В результате срав­нения контролируемого соединения с эталоном делается вывод о качестве соединения.

Рисунок 3 - Магнитная запись дефек­тов на ленту: 1 - подвижный электромагнит, 2 - де­фект шва, 3 - магнитная лента.

Радиационные методы контроля являются на­дежным и широко распространенными методами контроля, осно­ванными на способности рентгеновского и гамма-излучения про­никать через металл. Выявление дефектов при радиационных ме­тодах основано на разном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источник излучения, с противоположной стороны плотно прижимают кассету с чувствительной фотопленкой (рис. 4). При просвечивании лучи проходят через сварное соединение и облучают пленку. В местах, где имеются поры, шлаковые включения, непровары, крупные трещины, на пленке образуются темные пятна. Вид и размеры дефектов определяют сравнением пленки с эталонными снимками. Источниками рентгеновского излучения служат специальные аппа­раты (РУП-150-1, РУП-120-5-1 и др.).



Рисунок 4 - Схема радиационного просвечивания швов: а - рентгеновское, б - гамма-излучением: 1 - источник излу­чения, 2 - изделие, 3 - чувствительная пленка

Рентгенопросвечиванием целесообразно выявлять дефекты в деталях толщиной до 60 мм. Наряду с рентгенографированием (экспозицией на пленку) приме­няют и рентгеноскопию, т.е. получение сигнала о дефектах при просвечивании металла на экран с флуоресцирующим покрытием. Имеющиеся дефекты в этом случае рассматривают на экране. Такой способ можно сочетать с телеви­зионными устройствами и конт­роль вести на расстоянии.

При просвечивании сварных соединений гамма-излучением источником излучения служат ра­диоактивные изотопы: кобальт-60, тулий-170, иридий-192 и др. Ам­пула с радиоактивным изотопом помещается в свинцовый контей­нер. Технология выполнения просвечивания подобна рентгеновско­му просвечиванию. Гамма-излучение отличается от рентгеновского большей жесткостью и меньшей длиной волны, поэтому оно может проникать в металл на большую глубину. Оно позволяет просвечи­вать металл толщиной до 300 мм. Недостатками просвечивания гамма-излучением по сравнению с рентгеновским являются мень­шая чувствительность при просвечивании тонкого металла (менее 50 мм), невозможность регулирования интенсивности излучения, большая опасность гамма-излучения при неосторожном обращении с гамма-аппаратами.

Ультразвуковой контроль основан на способно­сти ультразвуковых волн проникать в металл на большую глубину и отражаться от находящихся в нем дефектных участков. В процессе контроля пучок ультразвуковых колебаний от вибрирующей пла­стинки-щупа (пьезокристалла) вводится в контролируемый шов. При встрече с дефектным участком ультразвуковая волна отража­ется от него и улавливается другой пластинкой-щупом, которая преобразует ультразвуковые колебания в электрический сигнал (рис. 5).

Рисунок 5 - Ультразвуковой контроль швов: 1 - генератор УЗК, 2 - щуп, 3 - усилитель, 4 - экран.

Эти колебания после их усиления подаются на экран электронно-лучевой трубки дефектоскопа, которые свидетельству­ют о наличии дефектов. По характеру импульсов судят о протяжен­ности дефектов и глубине их залегания. Ультразвуковой контроль можно проводить при одностороннем доступе к сварному шву без снятия усиления и предварительной обработки поверхности шва.

Ультразвуковой контроль имеет следующие преимущества: высокая чувствительность (1 - 2%), позволяющая обнаруживать, измерять и определять местонахождение дефектов площадью 1 - 2 мм 2 ; большая проникающая способность ультразвуковых волн, позволяющая контролировать детали большой толщины; возможность контроля сварных соединений с односторонним под­ходом; высокая производительность и отсутствие громоздкого обо­рудования. Существенным недостатком ультразвукового контроля является сложность установления вида дефекта. Этот метод приме­няют и как основной вид контроля, и как предварительный с последующим просвечиванием сварных соединений рентгеновским или гамма-излучением.

Методы контроля с разрушением сварных соединений

К этим методам контроля качества сварных соединений отно­сятся механические испытания, металлографические исследования, специальные испытания с целью получения характеристик сварных соединений. Эти испытания проводят на сварных образцах, выре­заемых из изделия или из специально сваренных контрольных соединений - технологических проб, выполненных в соответствии с требованиями и технологией на сварку изделия в условиях, соответствующих сварке изделия.

Целью испытаний является: оценка прочности и надежности сварных соединений и конструкций; оценка качества основного и присадочного металла; оценка правильности выбранной техноло­гии; оценка квалификации сварщиков.

Свойства сварного соединения сопоставляют со свойствами основного металла. Результаты считаются неудовлетворительными, если они не соответствуют заданному уровню.

Механические испытания проводятся по ГОСТ 6996-66, предус­матривающему следующие виды испытаний сварных соединений и металла шва: испытание сварного соединения в целом и металла разных его участков (наплавленного металла, зоны термического влияния, основного металла) на статическое растяжение, статисти­ческий изгиб, ударный изгиб, стойкость против старения, измере­ние твердости.

Контрольные образцы для механических испытаний выполняют определенных размеров и формы.

Испытаниями на статическое.растяжение определяют проч­ность сварных соединений. Испытаниями на статический изгиб определяют пластичность соединения по величине угла изгиба до образования первой трещины в растянутой зоне. Испытания на статический изгиб проводят на образцах с продольными и попереч­ными швами со снятым усилением шва заподлицо с основным металлом. Испытаниями на ударный изгиб, а также разрыв опре­деляют ударную вязкость сварного соединения. По результатам определения твердости судят о структурных изменениях и степени подкалки металла при охлаждении после сварки.

Основной задачей металлографических исследований являются установление структуры металла и качества сварного соединения, выявление наличия и характера дефектов. Металлографические исследования включают в себя макро- и микроструктурный методы анализа металлов.

При макроструктурном методе изучают макрошли­фы и изломы металла невооруженным глазом или с помощью лупы. Макроисследование позволяет определить характер и расположение видимых дефектов в разных зонах сварных соединений.

При микроструктурном анализе исследуется струк­тура металла при увеличении в 50 - 2000 раз с помощью оптических микроскопов. Микроисследование позволяет установить качество металла, в том числе обнаружить пережог металла, наличие оксидов, засоренность металла шва неметаллическими включениями, вели­чину зерен металла, изменение состава его, микроскопические трещины, поры и некоторые другие дефекты структуры. Методикаизготовления шлифов для металлографических исследований за­ключается в вырезке образцов из сварных соединений, шлифовке, полировке и травлении поверхности металла специальными травителями. Металлографические исследования дополняются измере­нием твердости и при необходимости химическим анализом металла сварных соединений. Специальные испытания проводят с целью получения характеристик сварных соединений, учитывающих усло­вия эксплуатации сварных конструкций: определение коррозион­ной стойкости для конструкций, работающих в различных агрес­сивных средах; усталостной прочности при циклических нагружениях; ползучести при эксплуатации в условиях повышенных температур и др.

Применяют также и методы контроля с разрушением изделия. В ходе таких испытаний устанавливают способность конструкций выдерживать заданные расчетные нагрузки и определяют разруша­ющие нагружения, т.е. фактический запас прочности. При испыта­ниях изделий с разрушением схема нагружения их должна соответ­ствовать условиям работы изделия при эксплуатации. Число изде­лий, подвергающихся испытаниям с разрушением, устанавливается техническими условиями и зависит от степени их ответственности, системы организации производства и технологической отработан­ности конструкции.

Этот контроль очень важный для деталей и особенно необходим для деталей, от которых зависит безопасность движения автомобиля.

Методы обнаружения скрытых дефектов :

1. метод опрессовки;

2. метод красок;

3. метод люминесцентный;

4. метод намагничивания;

5. ультрозвуковой метод

Метод опрессовки – для контроля дефектов в полых деталях с помощью воды (гидравлический метод) и сжатого воздуха (пневматический метод).

Гидравлический метод применяют для выявления трещин в корпусных деталях (блок и головка цилиндров).

Испытание – на специальном стенде горячей водой р = 0,3…0,4 МПа при герметизации детали. О наличии трещин судят по подтеканию воды.

Пневматический метод – для деталей типа баки, радиаторы, трубопроводы и др.

Полость детали заполняют сжатым воздухом под давлением (по ТУ) и погружают в ванну с водой. О наличии дефектов укажут пузырьки воздуха.

Метод красок основан на свойстве жидких красок к взаимной диффузии.

Сущность в том, что на контролируемую обезжиренную поверхность наносят красную краску, разведенную керосином. Краска проникает в трещины. Затем ее смывают растворителем и поверхность покрывают белой краской. На поверхности на белом фоне проявляется красный рисунок трещин, увеличенный по ширине. Метод позволяет обнаружить трещины не менее 20 мкм по ширине .

Люминесцентный метод основан на свойстве веществ светится при облучении их ультрафиолетовыми лучами.

Для этого деталь погружают в ванну с флюорисцентной жидкостью (50% керосина, 25% бензина, 25% трансформаторного масла с добавкой флюорисцетного красителя – дефектоля 3 кг/м 3 смеси), промывают водой, сушат теплым воздухом, припудривают порошком силикателя, который вытягивает флюорисцентную жидкость из трещин. При облучении пропитанный порошок будет ярко светиться в местах трещин.

Прибор – люминесцентный дефектоскоп для трещин более 10 мкм в деталях из немагнитных материалов.

Метод магнитной дефектоскопии применяют для автомобильных деталей, изготовленных из ферромагнитных материалов (сталь, чугун).

Сущность - деталь намагничивают на магнитном дефектоскопе. Магнитные силовые линии, проходя через деталь и встречая дефект, огибают его. Над дефектом образуется поле рассеивания магнитных силовых линий, а на краях трещины – магнитные полюсы.

Чтобы обнаружить неоднородность магнитного поля, деталь покрывают суспензией (50% раствора керосина и трансформаторного масла, 50% магнитного порошка – окиси железа – магнетита). Магнитный порошок будет протягиваться по краям трещин и четко обрисует их границы. Затем деталь размагничивается путем медленного вывода детали из соленоида (переменный ток) или уменьшения силы тока - для деталей небольших размеров. Магнитное поле создается за счет переменного тока I = 1000…4000 А. Ширина трещин до 1 мм.

Виды дефектоскопов:

1.Дефектоскоп циркулярного намагничивания. Магнитное поле создается за счет перемещения деталей вдоль (для продольных трещин)

2. Дефектоскоп продольного намагничивания …… (для поперечных трещин)

3. Дефектоскоп комбинированного намагничивания (для трещин любого направления) - М-217 (диаметр – 90 мм, длина – 900 мм), УМД-9000 (для крупных деталей)

Метод ультразвуковой дефектоскопии высокочувствительный и основан на свойстве ультразвука проходить через металлическое изделие и отражается от границы двух средних, в том числе и от дефекта (трещин, раковин и пр.)

Способы приема сигнала от дефекта:

1. ультразвуковая дефектоскопия просвечиванием (теневой метод)

2. ультразвуковая дефектоскопия импульсная

Метод просвечивания основан на появлении звуковой тени за дефектом. В этом случае ультразвуковой излучатель находится по одну сторону детали, а приемник – по другую.

Недостатки:

1. Невозможность определения глубины залегания дефекта.

2. Сложность расположения с обеих сторон детали приемника и излучателя.

Импульсный метод заключается в том, что излучатель-приемник находится по одну сторону. К поверхности детали подводят излучатель. Если дефекта нет, то ультразвуковой сигнал, отразившись от противоположной стороны детали, возвращается обратно и возбуждает электросигнал. На экране электронно-лучевой трубки видны два всплеска. Если в детали дефект, то УЗК отразится от дефекта и появится промежуточный всплеск.

Путем сопоставления расстояний между импульсами на экране и размеров деталей можно определить месторасположение и глубину залегания дефекта.

Ультразвуковые дефектоскопы ДУК-66ПМ, УД-10УА и др.

Максимальная глубина просвечивания 2,6 м, минимальная – 7 мм.

При контроле деталей очень важно проверять их на наличие скрытых дефектов (поверхностных и внутренних трещин). Этот контроль особенно необходим для деталей, от которых зависит безопасность эксплуатации.

Существует большое количество различных методов обнаружения скрытых дефектов на деталях. В ремонтном производстве нашли применение следующие методы: опрессовки, красок, люминесцентный, намагничивания, ультразвуковой.

Метод опрессовки применяют для обнаружения скрытых дефектов в полых деталях. Опрессовку деталей производят водой (гидравлический метод) и сжатым воздухом (пневматический метод).

Метод гидравлического испытания применяют для выявления трещин в корпусных деталях (блок и головка цилиндров). Испытание производится на специальных стендах, которые обеспечивают герметизацию всех отверстий в контролируемых деталях. При испытании полость детали заполняют горячей водой под давлением 0,3.. .0,4 МПа. О наличии трещин судят по подтеканию воды.

Метод пневматического испытания применяют при контроле на герметичность таких деталей, как радиаторы, баки, трубопроводы и др. Полость детали в этом случае заполняют сжатым воздухом под давлением, соответствующим техническим условиям на испытание, и затем погружают в ванну с водой. Выходящие из трещины пузырьки воздуха укажут место нахождения дефектов.

Метод красок основан на свойстве жидких красок к взаимной диффузии. При этом методе на контролируемую поверхность детали, предварительно обезжиренную в растворителе, наносят красную краску, разведенную керосином. Краска проникает в трещины. Затем красную краску смывают растворителем, и поверхность детали покрывают белой краской. Через несколько секунд на белом фоне проявляющей краски появляется рисунок трещины, увеличенной по ширине в несколько раз. Этот метод позволяет обнаруживать трещины, ширина которых не менее 20 мкм.

Люминесцентный метод основан на свойстве некоторых веществ светиться при облучении их ультрафиолетовыми лучами. При контроле деталей этим методом ее сначала погружают в ванну с флюоресцирующей жидкостью, в качестве которой применяют смесь из 50% керосина, 25% бензина и 25% трансформаторного масла с добавкой флюоресцирующего красителя (дефектоля) или эмульгатора. Затем деталь промывают водой, просушивают струёй теплого воздуха и припудривают порошком силикагеля. Силикагель вытягивает флюоресцирующую жидкость из трещины на поверхность детали. При облучении детали ультрафиолетовыми лучами порошок силикагеля, пропитанный флюоресцирующей жидкостью, будет ярко светиться, обнаруживая границы трещины. Люминесцентные дефектоскопы применяют при обнаружении трещин шириной более 10 мкм в деталях, изготовленных из немагнитных материалов.

Метод магнитной дефектоскопии нашел наиболее широкое применение при контроле скрытых дефектов в деталях, изготовленных из ферромагнитных материалов (сталь, чугун). Для обнаружения дефектов этим методом деталь сначала намагничивают. Магнитные силовые линии, проходя через деталь и встречая на своем пути дефект (например, трещину), огибают его как препятствие с малой магнитной проницаемостью. При этом над дефектом образуется поле рассеивания магнитных силовых линий, а на краях трещины - магнитные полюсы.

Для того чтобы обнаружить неоднородность магнитного поля, деталь поливают суспензией, состоящей из 50 % раствора керосина и трансформаторного масла, в котором во взвешенном состоянии находится мельчайший магнитный порошок (окись железа - магнетит). При этом магнитный порошок будет притягиваться краями трещины и четко обрисует ее границы.

После контроля на магнитных дефектоскопах детали необходимо размагнитить. Это достигается при переменном токе путем медленного вывода детали из соленоида, а при постоянном - за счет изменения полярности при постепенном уменьшении силы тока.

Метод магнитной дефектоскопии обладает высокой производительностью и позволяет обнаруживать трещины шириной до 1 мкм.

Ультразвуковой метод обнаружения скрытых дефектов основан на свойстве ультразвука проходить через металлические изделия и отражаться от границы двух сред, в том числе и от дефекта.

В зависимости от способа приема сигнала от дефекта различают два метода ультразвуковой дефектоскопии: просвечивания и импульсный.

Метод просвечивания основан на появлении звуковой тени за дефектом. В этом случае излучатель ультразвуковых колебаний находится по одну сторону от дефекта, а приемник - по другую.

При контроле детали к ее поверхности подводят излучатель ультразвуковых колебаний, который питается от генератора. Если дефекта в детали нет, то ультразвуковые колебания, отразившись от противоположной стороны детали, возвратятся обратно и возбудят электрический сигнал в приемнике. При этом на экране электронно-лучевой трубки будут видны два всплеска: слева - излучаемый импульс и справа - отраженный от противоположной стенки детали (донный).

Если в детали имеется дефект, то ультразвуковые колебания отразятся от дефекта, и на экране трубки появится промежуточный всплеск.

Путем сопоставления расстояний между импульсами на экране электронно-лучевой трубки осциллоскопа и размеров детали можно определить не только местонахождение дефекта, но и глубину его залегания.

Метод ультразвуковой дефектоскопии обладает очень высокой чувствительностью и применяется при обнаружении внутренних дефектов в деталях (трещин, раковин, шлаковых включений и т. п.).

Максимальная глубина прозвучивания для стальных деталей до 3 м, а минимальная 7 мм.

Магнитоакустический метод. Метод основан на слабом намагничивании изделия. При перемещении искателя прибора возле дефектного места детали в приемнике, выполненном виде катушки колебательного контура меняется наведенная э.д.с., которая через усилитель воспринимается в телефонных наушниках.

При перемещении искателя прибора через дефектные места детали тон звука в телефоне резко меняется.

Применяются при дефектоскопии канатов, сварочных швов, рельсов.

Поделиться: