Какие вы знаете центры оледенения. Центр оледенения. Оледенения на территории России

Жителям Европы и Северной Америки трудно себе представить, что всего 200–14 тыс. лет назад (с геологической точки - зрения совсем недавно) мощные ледниковые щиты, подобные антарктическим, неоднократно покрывали огромные территории. Отдельные лопасти ледниковых покровов спускались в Восточной Европе до 49° с. ш., а в Северной Америке - до 38° с. ш. На месте Москвы или Чикаго располагались ледники толщиной до 1–3 км. Неудивительно, что в середине ХIХ в. открытие следов этих оледенений, относившихся к позднечетвертичной эпохе и ко времени появления современного человека, стало большой научной сенсацией. Некоторые исследователи посчитали, что эти оледенения были первыми эпизодами процесса общего замерзания Земли, декларируемого теорией Канта - Лапласа. Другие - сомневались, что валунные суглинки, считавшиеся ледниковыми, действительно отложены ледниками. Однако детальное изучение этих отложений и сравнение их с отложениями современных ледников подтвердили ледниковый генезис валунных суглинков (морен), покрывавших северные части Европы и Северной Америки. Был выявлен комплекс диагностических критериев, которые позволяют отличать ископаемые морены (тиллиты) от внешне сходных неледниковых отложений. Важнейшие признаки тиллитов - принесенные издалека (эрратические) валуны, граненные и штрихованные ледниками; исштрихованные или смятые в сложные складки породы ложа ледников (гляциодислокации); морозобойные клинья и полигональные грунты; вытаявшие из айсбергов камни (дропстоуны), фрагменты морен и др.

Во второй половине XIX в. и в начале XX в. были обнаружены следы существенно более древних оледенений: позднепалеозойских (ныне датированных в интервале 300–250 млн лет назад) и затем докембрийских (750–550 и 2400–2200 млн лет назад). Эти открытия опровергли теорию Канта - Лапласа о постепенном остывании (вплоть до четвертичного оледенения) первоначально горячей Земли. В XX и начале XIX столетия были выявлены и изучены оледенения в нижнем палеозое (около 450 млн лет назад) и самые древние - в позднем архее (около 2900 млн лет назад). Причины, характер и последствия оледенений стали популярным предметом научных дискуссий и прогнозов.

Большой интерес к оледенениям в науках о Земле не случаен. Климат - важный фактор в эволюции внешних оболочек нашей планеты, особенно биосферы . Он определяет ее термодинамическое состояние, регулируя внутренний, а частично и внешний тепло- и массообмен. Оледенения - одни из самых экстремальных климатических событий. С ними связаны многие катастрофические изменения на Земле, которые вызывали драматически быстрые количественные и качественные перестройки в биосфере и биоте планеты.

История оледенений

Проведенные во второй половине ХХ в. и начале ХХI в. интенсивные геологические исследования на всех континентах, а также достижения радиоизотопных, палеонтологических и хемостратиграфических методов определения возраста горных пород позволили существенно детализировать историю и ареалы распространения древних оледенений на Земле . На протяжении последних 3 млрд геологической истории происходило чередование длительных интервалов с частыми оледенениями (гляциоэр) и интервалов, в которых их следы отсутствуют (термоэр) [ , ]. Гляциоэры состоят из чередующихся ледниковых периодов (гляциопериодов), а ледниковые периоды, в свою очередь, - из ледниковых и межледниковых эпох (рис. 1). Некоторые исследователи именуют гляциоэры ледниковыми (icehouses ), а термоэры - парниковыми (greenhouses ) циклами , или холодными и теплыми климатическими модами .

На сегодняшний день в обозримой геологической истории установлено пять гляциоэр и четыре разделяющих их термоэры.

Каапвальская гляциоэра (около 2950–2900 млн лет назад) . Ее следы обнаружены в верхнем архее Южной Африки, на кратоне Каапваал. Они фиксируются в подгруппе Гавермент в прогибе Витватерсранд и в группе Мозаан в прогибе Понгола. В подгруппе Гавермент в формации Коронейшен описываются два горизонта тиллитов мощностью около 30 м, разделенных толщей песчаников и сланцев мощностью около 180 м. Тиллиты содержат рассеянные граненые и штрихованные камни. Их возраст лежит в пределах 2914–2970 млн лет. Восточнее, в верхней части группы Мозаан, в формации Одвалени наблюдаются четыре пласта тиллитов мощностью от 20 до 80 м. Они содержат камни различного размера, окатанности и состава. Некоторые из них несут характерные следы ледниковой абразии, а дропстоуны, рассеянные в сланцах, окружены сингенетичными деформациями типа структур всплеска.

Позднеархейская термоэра (2900–2400 млн лет назад). В этом интервале геологической истории до сих пор не обнаружено ледниковых отложений, что позволяет условно рассматривать его как термоэру.

Гуронская гляциоэра (2400–2200 млн лет назад). Следы оледенений этого времени известны на юге Канады, на северном побережье оз. Гурон. Там, в средней части Гуронской надгруппы установлены три ледниковых формации (снизу вверх): Рамзай Лейк, Брюс и Гауганда. Они разделены мощными неледниковыми отложениями. Гуронский ледниковый комплекс моложе 2450 млн лет и древнее 2220 млн лет. В штате Вайоминг, в 2000 км юго-западнее оз. Гурон, ледниковые отложения, близкие к гуронским, известны в надгруппе Сноу Пасс. Вероятно, аналоги гуронских тиллитов присутствуют также и в районе Шибугамо, к северо-востоку от оз. Гурон и к западу от Гудзонова залива. Широкое распространение в Северной Америке ледниковых отложений возрастом 2200–2450 млн лет свидетельствует о том, что в начале раннего протерозоя значительная часть древнего архейского ядра этого континента неоднократно подвергалась покровным оледенениям.

В Европе отложения, сходные с ледниковыми, известны в верхней части сариолийской серии, которая залегает на архейском Карело-Финском массиве Балтийского щита. Их возраст оценивается в 2300–2430 млн лет.

В Африке, в прогибе Грикваленд, описывается ледниковая формация Макганйене (ранее именовавшаяся Тиллитами Грикватаун) возрастом моложе 2415 млн лет и древнее 2220 млн лет. Она сложена грубослоистыми тиллитами мощностью до 500 м, которые содержат эрратические и обработанные ледником камни. В основании тиллитов наблюдается ледниковое ложе. Аналоги формации Макганйене имеются и в прогибе Трансвааль.

В Западной Австралии распространены ледниковые отложения Метеорайт Боре. Их возраст лежит в интервале 2200–2450 млн лет.

Таким образом, в период между 2400 и 2200 млн лет назад на четырех современных континентах Земли неоднократно происходили крупные оледенения, нередко носившие покровный характер. Об этом свидетельствует не только широкое распространение ледниковых пород, но и присутствие марино-гляциальных (айсберговых) отложений. Корреляция раннепротерозойских ледниковых горизонтов между собой затруднительна, и установить точное количество оледенений в раннем протерозое и их ранг пока сложно. Предполагается, что в гуронской гляциоэре существовало по меньшей мере три ледниковых периода, и в каждом из них есть следы нескольких подчиненных дискретных событий, которые можно квалифицировать как ледниковые эпохи.

Великая ледниковая пауза . Вслед за гуронской гляциоэрой началась длительная термоэра. Она продолжалась почти 1450 млн лет (2200–750 млн лет назад). Существенное потепление на Земле наступило сразу после завершения гуронской гляциоэры. Даже в тех районах, где фиксировались следы оледенений, климат быстро сменился теплым и аридным. В ряде регионов стали накапливаться карбонатные, часто красноцветные и строматолитовые отложения с многочисленными включениями псевдоморфоз по гипсу, ангидриту и каменной соли. В Австралии, России (Карелии) и США подобные породы обнаружены в отложениях возрастом 2100–2250 млн лет. В Карелии появляются характерные для жаркого климата красноцветные карбонатные породы и корки типа каличе, калькретов и силькретов, а также пустоты от выщелачивания кристаллов гипса. Выше, в свите Туломозеро возрастом около 2100 млн, скважиной вскрыта толща каменной соли мощностью 194 м. Она перекрывается трехсотметровой пачкой ангидритов и магнезитов. Многочисленные следы аридной седиментации фиксируются и в более молодых отложениях протерозоя, вплоть до середины верхнего рифея (около 770 млн лет).

Публикации о следах оледенений во время Великой ледниковой паузы редки и вызывают сомнения, так как не содержат типичных, а тем более прямых признаков ледниковых пород и имеют сугубо локальное распространение.

Африканская гляциоэра (750–540 млн лет назад). Ее отложения сохранились во многих регионах Земли, но особенно полно представлены в Африке. Они изучены довольно подробно, что позволяет выделить в ее составе шесть гляциопериодов.

Гляциопериод Кайгас . Первое оледенение африканской гляциоэры - Кайгас - произошло около 754 млн лет назад в Южной Африке. Несколько позже, 746 млн лет назад, наступило оледенение Чуос. Эти два близких по возрасту и местоположению ледниковых эпизода следует, по-видимому, включить в один ледниковый период, оставив за ним традиционное название Кайгас. Его породы представлены марино-гляциальными и ледниковыми речными (флювиогляциальными) отложениями, в которых местами встречаются железорудные горизонты. Предполагалось, что оледенение Кайгас носило региональный характер. Однако сейчас следы приблизительно одновозрастного оледенения установлены и в Центральной Африке (Большой конгломерат Катанги возрастом 735–765 млн лет). Значительный ареал распространения и присутствие марино-гляциальных отложений говорит о том, что ледники данного периода не были локальными, а выдвигались широким фронтом на континентальный шельф.

В Бразилии карбонатные отложения в основании серии Бамбуи датированы 740 млн лет, и подстилающие их ледниковые отложения формации Макаубас также можно отнести к гляциопериоду Кайгас.

Гляциопериод Рэпитен состоит из отложений групп Рэпитен в горах Макензи (Канада) и Гхубрах (Оман), нижнего тиллита свиты Покателло (США, штат Айдахо) и, возможно, также свиты Чученг-Чанган (Южный Китай), сформировавшихся 723–710 млн лет назад. С отложениями этого гляциопериода в Канаде и некоторых других регионах связаны крупные залежи железных руд.

Гляциопериод Стерт представлен подсерией Юднамонтана в Южной Австралии. В ней различают как минимум два ледниковых эпизода. Первый связан с Тиллитом Пуалко, отделенным от второго ледникового эпизода Вилиерпа несогласием и толщей терригенных, иногда железорудных пород и пачкой доломитов. В Австралии стертовские отложения непосредственно перекрываются доломитами и черными сланцами возрастом 660 млн лет. От стертовских оледенений сохранились марино-гляциальные отложения, которые свидетельствуют об их покровном характере. Не исключено, что часть недостаточно изученных пород баллаганахской серии Патомского нагорья, похожих на ледниковые отложения, тоже относятся к данному гляциопериоду. В Киргизии с ним связаны очень крупные залежи железных руд.

Гляциопериод Марино включает группу оледенений, произошедших около 640–630 млн лет назад (в начале вендской системы). В типовом разрезе Южной Австралии он представлен подсерией Иерелина, строение которой свидетельствует о трехкратной смене ледниковых и межледниковых обстановок в открытом бассейне. Начинался и заканчивался гляциопериод Марино постепенно - ледовым разносом, о чем свидетельствуют сланцы, содержащие рассеянные гальки. Предположение, что оледенение Марино началось почти внезапно (около 650 млн лет назад), было непрерывным и внезапно закончилось (635 млн лет назад), лишено оснований. Данный вывод исходит из гипотетических представлений о непрерывных тотальных оледенениях Земли, охватывавших все континенты и океаны (гипотеза snowball Earth ). Эта гипотеза противоречит характеру типовых разрезов Марино, Стерт, Рэпитен и других сопоставимых с ними отложений, а также свидетельствам о сохранении цикла общего водообмена на Земле в то время.

Ледниковые отложения гляциопериода Марино известны во многих регионах Земли: на Патомском нагорье (рис. 2) и Алданском щите (рис. 3) Средней Сибири, в Киргизии, Китае, Омане, горах Макензи в Канаде, в Северной Африке и Южной Америке. В их разрезах выделяются несколько эпизодов, которые могут рассматриваться как гляциоэпохи.

Гляциопериод Гаскье. Его ледниковые отложения возрастом 584–582 млн лет установлены на п-ове Ньюфаундленд. В Северной Америке их вероятные аналоги - отложения формации Сквантум и Факир.

На Среднем Урале для ледниковых образований, которые коррелируют с отложениями Гаскье, определен возрастной интервал 567–598 млн лет. Некоторые другие ледниковые толщи относят к данному гляциопериоду на основании далеких стратиграфических корреляций (формация Мортенснес на севере Норвегии и др.) или совсем бездоказательно, только по их стратиграфическому положению в разрезах, расположенных выше отложений Марино (например, формации Халканчоуг и Лочуань в Китае и Сера Азул в Бразилии). В действительности, как будет показано далее, многие из них принадлежат более молодому байконурскому гляциогоризонту.

Гляциопериод Байконур . Это оледенение произошло непосредственно перед немакит-далдынским веком, завершающим вендский период позднего докембрия (547–542 млн лет назад). Его отложения включают байконурскую свиту Средней Азии, базальную часть забитской свиты Восточного Саяна, формации Ханкалчоуг хребта Куругтаг, Хонгтиегоу Цайдама, Женгмугуан гор Хелан-Шан, Лочуань и ее аналоги в Китае. К гляциопериоду Байконур можно отнести и тиллиты докембрийских массивов Центральной Европы (моложе 570 и древнее 540 млн лет), триаду серии Пурпур де Ахнет Ахаггара (535–560 млн лет), подсвиту Вингербрик (545–595 млн лет) и нижнюю часть свиты Номтсас группы Нама Намибии (539–543 млн лет).

Главный ледниковый эпизод этого гляциопериода произошел вблизи нижней границы немакит-далдынского века, около 542 млн лет назад. Его значение подчеркивается стратиграфическим перерывом и большим отрицательным экскурсом δ 13 С в основании отложений немакит-далдынского яруса. Собственно байконурскому эпизоду и, вероятно, близкому по возрасту оледенению Номтсас в Намибии предшествовал ледниковый эпизод Вингербрик (545 млн лет назад), а также недавно описанный эпизод Хонгтиегоу в Цайдаме. Фоссилии, найденные ниже и выше свиты Хонгтиегоу, говорят о близости ее возраста средней части венда.

Раннепалеозойская термоэра (540–440 млн лет назад). На протяжении кембрия и большей части ордовика следов оледенений не обнаружено. Данный временной интервал, несмотря на то, что большие массивы гондванской суши находились в высоких южных широтах, характеризовался многочисленными признаками теплого и аридного климата. В то время были широко распространены карбонатные отложения (в том числе рифы) и солеродные бассейны. Нередко встречались красноцветные карбонатные породы и каолинитовые глины. Тогда (за исключением кембрия) фаунистическое разнообразие морской биоты быстро росло, особенно в среднем ордовике и начале позднего. Это время нередко именуется Великим ордовикским событием биодиверсификации. Таким образом, отрезок геологической истории от начала кембрия и до начала позднего ордовика считается термоэрой, которая продолжалась около 100 млн лет.

Гондванская гляциоэра (440–260 млн лет назад). Данные оледенения в основном связаны с Гондванским мегаконтинентом. Здесь выделяются пять гляциопериодов.

Раннепалеозойский гляциопериод. Первые сравнительно небольшие оледенения в раннем палеозое произошли, очевидно, в начале или середине катийского века (карадоке), а последние достоверно установленные следы оледенений этого гляциопериода относятся к позднелландоверийскому - ранневенлокскому времени. Таким образом, раннепалеозойский ледниковый период продолжался около 20 млн лет. Он разделяется на три гляциоэпохи: начальную - катийскую, главную - хирнантскую и заключительную - лландоверийско-венлокскую.

Катийская гляциоэпоха. Данные о том, что ордовикские оледенения начались еще в карадоке, появлялись неоднократно. На востоке Северной Америки (в Новой Шотландии), вблизи кровли свиты Галифакс известна пачка метатиллитов с эрратическими, гранеными, штрихованными и айсберговыми камнями. Вышележащая свита Уайт-Рок содержит некоторое количество карадокской или, возможно, несколько более молодой фауны. Более уверенно возраст устанавливается для марино-гляциальных отложений Гандер-Бей северо-восточной части Ньюфаундленда, которые непосредственно перекрываются карадокскими граптолитовыми сланцами. На юге Африки, в группе Столовой Горы известны два ледниковых горизонта в свите Пакхуис, природа которых подтверждается наличием штрихованных и граненых камней, ледникового ложа, гляциодислокаций, морозобойных клиньев и полигональных грунтов. Возраст их, скорее всего, - катийский. Фауна, характерная для более позднего хирнантия, найдена в отложениях, покрывающих тиллиты. В породах, подстилающих свиту Пакхуис, обнаружен более древний тиллит Хангклин. Его возраст по редкой фауне и косвенно, по скорости осадконакопления, оценен как карадокский. Некоторые исследователи полагают, что в катийском ярусе произошло не менее трех оледенений .

Хирнантская гляциоэпоха. В эту эпоху раннепалеозойское оледенение достигло максимальных размеров (рис. 4). Его природа и возраст особенно хорошо устанавливаются в Северной Африке и Аравии - классических областях его развития. Здесь в наиболее полных разрезах хирнантия фиксируется как минимум пять ледниковых эпизодов, суммарная длительность которых оценивается в 1,4 ± 1,4 млн лет. Согласно некоторым оценкам, сделанным по гляциоэвстатическим колебаниям (колебания уровня мирового океана, вызванные образованием и таянием ледников), хирнантский покров охватывал всю Африку, Аравию, Турцию, а также большую область центральной части Южной Америки. В предгорьях Анд нижнепалеозойские ледниковые отложения протягиваются почти непрерывным поясом от Эквадора до Аргентины. Непосредственно над тиллитами обнаружена фауна верхней зоны хирнантия.

Лландоверийско-венлокская гляциоэпоха. Нижнепалеозойские ледниковые отложения известны в Амазонской впадине, в средней части они содержат фауну раннего лландовери (в том числе, граптолиты). Верхнюю часть данного разреза поэтому следует относить к нижнему силуру, начиная с лландовери. В юго-западной части Боливии и на большой территории прилежащих районов Перу и Аргентины распространена марино-гляциальная свита Канканири (Тиллиты Запла). Она сложена массивными, слоистыми или градационно-слоистыми тиллитами, которые содержат эрратические и штрихованные камни и валуны поперечником до 150 см. В них обнаружены средне- и позднелландоверийские и ранневенлокские ископаемые.

Позднедевонский - раннекарбоновый гляциопериод начался в конце фамена. На севере Бразилии в фаменском ярусе и нижнем карбоне сохранились следы трех ледниковых эпизодов. Следы верхнефаменского оледенения найдены и в США, на северо-востоке Аппалачского пояса.

Большинство исследователей склоняется к тому, что позднедевонские - раннекарбоновые оледенения имели в основном предгорный характер. Однако тот факт, что в отложениях присутствуют бассейновые и флювиогляциальные фации, указывает на распространение ледников в равнины, а иногда и на побережья крупных бассейнов, что возможно лишь при весьма значительном оледенении. Об этом говорят и ледниковые отложения позднедевонского - раннекарбонового возраста на севере Бразилии, которые накапливались в обширных платформенных бассейнах средних широт.

Среднекарбоновый гляциопериод. Его отложения распространены значительно шире и установлены в западной, восточной и северной частях Гондваны. Судя по хорошо изученным разрезам восточной части Австралии , которые датированы радиоизотопными и биостратиграфическими методами, среднекарбоновый ледниковый период начался в середине серпуховского века и закончился в конце московского. Здесь устанавливается четыре эпизода. Продолжительность каждого из них составляет от 1 до 5 млн лет. Эпизоды разделены интервалами длительностью приблизительно 2–3 млн лет, в которых отсутствуют следы оледенений. Все эти эпизоды можно квалифицировать как ледниковые и межледниковые эпохи.

Раннепермский гляциопериод - максимальный в гондванской гляциоэре. Он начался, видимо, в конце гжельского века, а закончился в начале артинского. В нем выделяются два ледниковых эпизода. За пределами Австралии отложения раннепермского ледникового периода распространены на огромной территории - от западной до восточной части Гондваны (рис. 5).

Позднепермский гляциопериод завершил гондванскую гляциоэру. Его отложения имеют ограниченное распространение. В восточных областях Австралии он включает два ледниковых эпизода. Первый, охватывавший конец кунгурского века и часть казанского, представлен дистальными айсберговыми ледниковыми фациями. Второй, охватывавший верхнюю часть яруса Уордиан и ярус Кэпитаниан (средняя часть татарского яруса), также сложен айсберговыми отложениями. Позднепермское оледенение проявилось и на северо-востоке Азии. В Верхоянской складчатой зоне широко распространены верхнепермские тиллоиды (тиллитоподобные несортированные и неслоистые грубообломочные породы). В ряде разрезов они содержат признаки ледникового происхождения: дропстоуны, тилловые пелеты, граненые и штрихованные камни.

Мезозойско -палеогеновая термоэра (250–35 млн лет назад). Длительные климатические пертурбации гондванской гляциоэры сменились теплым мезозойским климатом.

Глобальные климатические реконструкции, основанные на комплексе индикаторов, показали, что все высокие и средние широты обоих полушарий Земли в мезозое находились в умеренных и теплых влажных климатических зонах . Иногда в высоких широтах возникали сезонные льды, о чем свидетельствуют редкие находки дропстоунов. Но, поскольку и территориальное, и стратиграфическое распространение льдов было незначительным, можно полагать, что среднегодовые температуры в высоких широтах были существенно выше, чем ныне. В низких широтах преобладал аридный климат, а влажные экваториальные зоны появились лишь во второй половине мела.

В течение мезозоя иногда происходили довольно значительные перестройки климатической зональности, однако все эти изменения ограничивались областью положительных температур. Прямых свидетельств мезозойских оледенений не найдено, за исключением одного случая в Южной Австралии, где в единственном обнажении берриас-валанжинских пород встретился Тиллит Ливингстон мощностью до 2 м . Судя по ограниченному распространению, это сугубо локальное образование. К «возможным тиллитам» иногда причисляли конгломераты, брекчии и несортированные галечные сланцы, а к ледниковым условиям относили сезонное замерзание водоемов и рек .

Несмотря на отсутствие прямых доказательств существования мезозойских оледенений, в последние годы возникла гипотеза cold snabs . Она предполагает неоднократное повторение в мезозое очень коротких ледниковых эпизодов, которые проявлялись только в высоких широтах и приводили к небольшим полярным оледенениям, составлявшим около одной трети современных полярных шапок .

Эта гипотеза целиком основана на косвенных признаках. Во-первых, на быстрых колебаниях уровня моря «второго и третьего порядков», которым приписывается гляциоэвстатическая природа, если они сопровождались повышением δ 18 О в осадках. Однако понижение уровня моря любого происхождения из-за увеличения альбедо планеты приводит к некоторым похолоданиям и повышениям δ 18 О в осадках.

Во-вторых, подтверждением данной гипотезы считается присутствие в некоторых отложениях средней юры и мела дропстоунов. В мезозое они распространены главным образом в высоких палеоширотах и имеют различное происхождение. Чаще всего встречаются и упоминаются камни, разнесенные сезонными льдами. Сейчас они регулярно формируются в морях, озерах и реках умеренного климатического пояса, вплоть до 45° с. ш. Эти широты характеризуется положительными среднегодовыми температурами. Никаких оледенений (за исключением горных) там нет. Кроме того, дропстоуны могут иметь биогенное происхождение и не должны служить доказательством оледенений.

Третий аргумент в пользу гипотезы cold snabs - широкое распространение в мезозойских отложениях глендонитов - беломорской рогульки (СаСО 3 · 6Н 2 О). Однако ныне эти образования постоянно встречаются в холодных бассейнах высоких и средних широт. Их присутствие указывает на умеренно-холодный климат, а не на оледенения.

Кроме упоминавшегося обнажения тиллитов в Австралии, ни на одном из континентов Земли, ни на островах Арктики следов мезозойских ледниковых отложений не найдено. Нередко предполагается, что центры оледенений скрыты под современным антарктическим ледниковым покровом. Но такие выводы не подтверждаются детальными исследованиями ископаемой растительности на побережье Антарктиды. Например, изучение позднеальбского леса вблизи основания Антарктического п-ова показало, что лес там был средней густоты, состоял преимущественно из круглогодично зеленых широколиственных хвойных деревьев и имел сходство с современными влажными умеренными лесами юга Новой Зеландии .

Мезозойские температуры глубинных вод в южных высоких широтах, полученные (δ 13 O-методом) по бентосным фораминиферам, в юре и мелу колебались от 5 до 11°С, что позволяет сделать вывод об отсутствии в мезозое психросферы (слоя воды на дне океана с температурой около 4°C, толщиной несколько сотен метров). Напомним, что сейчас температура глубинных вод в высоких южных широтах составляет −1,5 - +0,5°С. Приведенные данные свидетельствуют о том, что Антарктида в мезозое не подвергалась оледенениям. Этот вывод согласуется и с результатами наиболее реалистических компьютерных моделей. Последние показывают, что, если какие-то мезозойские оледенения в Антарктиде и случались, то имели горный или весьма эфемерный характер.

Еще более спорно предполагать присутствие мезозойских ледниковых покровов в высоких широтах Северного полушария. Мезозойские отложения там широко распространены, хорошо изучены и не содержат никаких следов ледниковых отложений. Однако, исходя из гипотезы cold snabs , некоторые авторы, опираясь только на абстрактное геохимическое и климатическое моделирование, составили палеоклиматическую реконструкцию для средне-верхнеюрского пограничного интервала Северного полушария. Они реконструировали огромный ледниковый щит, лишь немного уступающий по размерам Антарктиде . Его мощность превышала 5 км и протягивался он на 4000 км - от Чукотки до западного края Сибирской платформы. Предполагаемый щит должен был оставить следы своего существования во множестве крупных прогибов, выполненных континентальными и морскими юрскими отложениями (в том числе отложениями среднего и верхнего отделов юрской системы). Однако никаких следов юрских ледниковых отложений там до сих пор не обнаружено. В некоторых разрезах встречаются глендониты и редкие обломки - следы разноса сезонными льдами. Это не удивительно. Согласно палеомагнитным данным, регион располагался в то время в высоких заполярных широтах. Реконструкция огромного ледникового щита на северо-востоке Азии опровергается и геологическими фактами. Результаты упомянутого моделирования совершенно абсурдны. Его авторы руководствовались исключительно абстрактными соображениями и расчетами, полностью игнорируя имеющиеся геологические данные. Такой подход - пример превращения ценного метода палеоклиматических реконструкций в компьютерные игры. К сожалению, он существенно дискредитирует методы моделирования палеоклимата вообще.

Антарктическая гляциоэра (35 млн лет назад - ныне), в которой мы живем, началась в позднем кайнозое. Ее история и, конечно, история текущего четвертичного периода интенсивно изучаются на протяжении последних десятилетий. Этой теме посвящена огромная литература [ , ]. Здесь мы ограничимся только кратким перечислением главных событий антарктической гляциоэры.

В начале кайнозоя, в палеоцене и эоцене климат Земли (как и в мезозое) оставался безледниковым. Особенно теплым были конец палеоцена и начало эоцена. В этом интервале на Земле отмечалось несколько температурных максимумов. Среди них выделяются ранне- и среднеэоценовые оптимумы. Во второй половине эоцена началось похолодание, и появились первые следы ледового или ледникового разноса в Южном океане. Одновременно усилился сезонный ледовый разнос в Арктике. Видимо, в высокогорных районах Антарктиды в то время зарождались горные ледники, языки которых местами (например, в заливе Прюдос) достигали моря. Континентальный ледниковый покров, соизмеримый с современным, образовался в Восточной Антарктиде в самом начале олигоцена, около 34 млн лет назад . Вскоре ледники достигли бровки шельфа. В самом конце олигоцена и начале миоцена произошло некоторое потепление, сопровождавшееся существенными колебаниями климата и объема ледникового щита. По данным моделирования, объем Восточно-Антарктического ледникового щита в то время иногда сокращался до 25% от его современного размера . Скорее всего, тогда и возникли шельфовые ледники Роне и Росса. В позднем миоцене снова произошло сильное похолодание. Ледниковый щит вновь достиг континентальных размеров. Кратковременное потепление, сходное с современным, произошло в среднем плиоцене 3,3–3,15 млн лет назад. С ним, возможно, было связано почти полное исчезновение Западно-Антарктического щита.

Поздний плиоцен и четвертичный период характеризовались быстрым прогрессивным похолоданием. Одновременно началось континентальное оледенение в Северном полушарии. Ледниковые покровы 2,74–2,54 млн лет назад возникли на севере Евразии и на Аляске. Усилился сезонный ледовый разнос терригенного материала в Арктическом океане. Это похолодание привело к разрастанию ледникового покрова Антарктиды, который 20–11 тыс. лет назад достиг бровки шельфа и континентального склона материка. В ледниковые максимумы ледники Евразии и Северной Америки распространялись до средних широт.

В целом, в течение позднего кайнозоя можно наметить три главных ледниковых максимума: в олигоцене, в конце миоцена и в конце плиоцена - квартере. Может быть, их следует рассматривать как отдельные ледниковые гляциопериоды.

Все ледниковые события позднего кайнозоя и в Антарктиде, и в Северном полушарии осложнялись целым спектром более коротких квазипериодических климатических колебаний разной амплитуды и знака. Они иногда (очень условно) именуются ледниковыми и межледниковыми. Судя по периодичности, причиной ледниковых осцилляций стали колебания солнечной инсоляции. Последние обусловливались наложением колебаний разной продолжительности, связанных с вариациями эксцентриситета орбиты Земли, угла наклона земной оси и ее прецессии. В сумме эти вариации дали сложную картину с преобладающими по амплитуде группами циклов в интервалах 19–24 тыс. лет (прецессионные), 39–41 тыс. лет (обусловленные наклоном земной оси), 95–131 и 405 тыс. лет (орбитальные). Самые короткие из этих циклов (приблизительно соответствующие циклам Миланковича) определяли чередование в позднем плиоцене и плейстоцене ледниковья и межледниковья. В отложениях, пробуренных на ледниковом шельфе Росса, в последние 4 млн лет насчитывается 32 ледниковых - межледниковых цикла со средней продолжительностью 125 тыс. лет . В Восточной Европе с начала плейстоцена до начала голоцена зафиксировано 15 ледниковых эпизодов .

В миоцене преобладали климатические колебания преимущественно прецессионной природы, с периодами 19–21 тыс. лет, а с началом оледенений в Северном полушарии стали доминировать колебания, длившиеся 41 и 125 тыс. лет, связанные с изменениями наклона оси и орбиты Земли.

Общий характер оледенений

Первое, что обращает на себя внимание при взгляде на рис. 1, это отчетливое увеличение количества и плотности оледенений на протяжении последних 3 млрд лет. Этот факт трудно объяснить более слабой изученностью древних отложений. Во второй половине ХХ в., особенно, во времена холодной войны, в связи с погоней за стратегическим сырьем было проведено геологическое картирование почти всех участков нашей планеты (даже слабо развитых стран и труднодоступных регионов), сложенных древними породами. Впоследствии в них были открыты многочисленные месторождения различных полезных ископаемых. При подобных исследованиях трудно было бы пропустить ледниковые отложения, которые обычно образуют крупные тела, служат стратиграфическими маркерами, имеют региональное распространение и к тому же привлекают внимание геологов своим неординарным видом и происхождением. Кроме того, увеличение частоты оледенений наблюдается и на протяжении детально изученного позднего докембрия и всего фанерозоя. Можно предположить, что такое увеличение со временем связано с ослаблением мантийного вулканизма и прогрессивным развитием биосферы .

Гляциоэры разного возраста имеют определенное сходство. Во-первых, те гляциоэры, которые, удается датировать, близки между собой по длительности (гуронская - около 200 млн лет, африканская - 210 млн лет, гондванская - 190 млн лет). Во-вторых, они сходны по структуре. Все гляциоэры состоят из 3–6 дискретных ледниковых периодов продолжительностью от нескольких миллионов до нескольких десятков миллионов лет.

В обозримой истории Земли насчитывается не менее 20 ледниковых периодов. Все они, в свою очередь, состояли из дискретных ледниковых событий, которые можно квалифицировать как ледниковые эпохи. Детальное изучение изотопов кислорода в позднем кайнозое и частично палеозое показало, что гляциоэпохи осложнялись существенными климатическими колебаниями с периодами от 400–500 тыс. до 20 тыс. лет.

Гляциоэры имели сходство не только по структуре, но и по своей общей динамике. Они, как правило, начинались с коротких региональных ледниковых периодов, которые, увеличиваясь в размерах и интенсивности, достигали во второй половине гляциоэры максимальных (обычно межконтинентальных) масштабов, распространяясь в средние, а порой, возможно, и в низкие широты. Затем оледенения быстро деградировали. Плейстоценовое оледенение было, очевидно, максимальным в позднекайнозойской гляциоэре. Можно предположить, что за голоценовым потеплением (если не вмешается человек) должно наступить новое небольшое оледенение.

Между докембрийскими и фанерозойскими оледенениями отмечаются не только черты сходства, но и определенные различия. Во-первых, отдельные докембрийские оледенения имели, видимо, более широкое распространение, чем самые обширные фанерозойские. Во-вторых, с докембрийскими и фанерозойскими оледенениями связаны противоположные по знаку аномалии δ 13 C карб (отрицательные в докембрии и положительные в фанерозое). Наконец, многие неопротерозойские оледенения сменялись отложением пачек характерных тонкослоистых доломитов. Перечисленные различия докембрийских и фанерозойских оледенений весьма существенны для выяснения причин их наступления. Однако убедительного объяснения этим фактам до сих пор не найдено.

Возможные причины оледенений

Причины оледенений до сих пор служат предметом многочисленных конкурирующих и взаимоисключающих друг друга гипотез, которые касаются широкого спектра процессов - от межгалактических до микробиотических. Сейчас многие исследователи склоняются к мысли, что оледенения вызывались взаимодействием нескольких геодинамических, геохимических и биотических процессов. Позднеархейские и раннепротерозойские оледенения, видимо, связаны с появлением фототрофных организмов и с первичной оксигенизацией атмосферы. В неопротерозое и фанерозое ведущей причиной крупных климатических колебаний (в том числе и появления гляциоэр), были, скорее всего, геодинамические процессы и особый характер вулканизма. Судя по хорошо изученному последнему отрезку геологической истории, в пики мантийно-плюмового вулканизма повышалось содержание парниковых газов в атмосфере, что приводило к потеплениям. Усиленное поглощение СО 2 фототрофными организмами, с последующим захоронением его в виде угля, почв, карбонатных и богатых органикой илов, а кроме того, интенсивное поглощение СО 2 при выветривании силикатов, вынос его в океан и осаждение углерода в виде карбонатов также могло вызывать потепления. Одновременно происходило повышение содержания кислорода в атмосфере и окисление метана. Эти процессы, снижавшие содержание парниковых газов в атмосфере, вели к похолоданию. Если они совпадали с интенсивным опусканием земной коры в мантию в зонах субдукции и со связанным с ней известково-щелочным эксплозивным вулканизмом, то происходило дальнейшее охлаждение Земли в результате дополнительного изъятия углерода из биосферы и захоронения его в мантии. Засорение стратосферы продуктами эксплозивного вулканизма снижало прозрачность атмосферы . В результате наложения этих процессов тепловой баланс биосферы понижался и происходили похолодания и оледенения. На эти главные климатические циклы, обусловленные геодинамическими процессами и характером вулканизма, накладывались упоминавшиеся выше астрономические циклы.

Роль оледенений в биосфере

Климат давно считался одним из двигателей эволюционных процессов. В частности отмечалось, что с термоэрами связан рост биоразнообразия и относительная таксономическая стабильность биоты, а с оледенениями, наоборот, - вымирание и последующее обновление биоты . Однако механизмы такого обновления подробно не рассматривались. Современные данные по оледенениям позволяют сделать некоторые выводы по данной проблеме. Многоступенчатая иерархия ледниковых событий (гляциоэры → гляциопериоды → гляциоэпохи → более короткие осцилляции разной частоты) создавала непрерывный ряд биосферных кризисов. Климатические процессы, отличаясь высокой скоростью и разной частотой, вызывали перестройки разного масштаба во всех подсистемах биосферы (рис. 6).

В тропосфере оледенения обусловливали понижение температуры, сокращение влагопереноса, перестройку и усиление систем циркуляции. Во время оледенений снижалась средняя температура Земли (не менее чем на 5°С ).

В гидросфере возникали шельфовые ледники и многолетние ледовые покровы, понижались температура и уровень океана. Это приводило к возникновению психросферы, температурному геохимическому и газовому расслоению водных масс и изменению системы циркуляции в океане. На континентах осушались шельфы и эпиконтинентальные бассейны за пределами зон оледенений, изменялся характер и происходило смещение климатических, биогеографических и почвенных поясов, понижался базис эрозии, усиливался твердый и ослаблялся растворимый сток с суши. В земной коре отмечались неоднократные гляциоэвстатические и изостатические опускания и поднятия.

Экологические и биотические кризисы, связанные со всеми этими перестройками, приводили к вымиранию и миграции организмов. Сохранялось некоторое количество устойчивых к новым условиям видов, а возникновение новых в кризисных условиях замедлялось. Происходила как бы стагнация биоты. В то же время освобождение значительной части старых и возникновение новых экологических ниш вело к диверсификации сохранившихся организмов. Непрерывные и сильные стрессы во время каскада экологических кризисов вызывали в организмах гипермутации и, как следствие, образование новых форм. Отбор из них устойчивых организмов приводил к возникновению бионоваций. Появление новых и диверсификация переживших кризисы форм, в свою очередь, порождали необратимые экологические и более общие биосферные перестройки. Они способствовали эволюционным процессам в биосфере в целом и в биоте в частности. Таким образом, между скоростью абиотических и биотических процессов возникала тесная связь.

С гуронской гляциоэры начались широкое распространение цианофитов и первичная оксигенизация океана и атмосферы . В течение раннего протерозоя и большей части рифея эволюционные процессы происходили главным образом на молекулярном и клеточном уровне. Завершились они в позднем рифее массовой эукариотизацией биоты , которая стала предпосылкой для бурных биосферных и биотических событий африканской гляциоэры.

Вследствие многократного повторения оледенений разного масштаба и связанных с ними экологических кризисов африканская гляциоэра характеризовалась целым рядом эволюционных импульсов, которые ускоряли биологическую эволюцию в целом. В то время в результате серии оледенений произошло формирование новой фанерозойской биоты и биосферы Земли. Редкие остатки аннелидоморф и панцирных амеб появились в разрезе верхнерифейских отложений после первых трех неопротерозойских оледенений. В отложениях, покрывающих вендские тиллиты Нантоу (стратиграфический аналог тиллитов Марино), найдены первые макроскопические водоросли, биомаркеры губок и, возможно, эмбрионы многоклеточных животных.

После оледенения Гаскье произошел расцвет вендских многоклеточных организмов: появились крупные акантоморфные акритархи, разнообразные многоклеточные водоросли (вендотениды, эохолинивые и др.), животные эдиакарского типа, а затем билатерии и первые животные с карбонатным (клаудины) и агглютинированным (сабеллитиды) скелетом. Вслед за байконурским оледенением возникло множество разнообразных мелких скелетных организмов - мелкораковинной фауны.

Таким образом, после каждого оледенения африканской гляциоэры отмечается возникновение новых групп организмов, расцвет некоторых ранее существовавших и смена доминантных. В результате этих процессов в конце африканской гляциоэры на Земле сформировалась биосфера фанерозойского типа. Кульминацией ускорения стало необычайно быстрое развитие многоклеточных бесскелетных и скелетных организмов в немакитдалдынском веке венда и в начале кембрия. Неслучайно момент резкого ускорения этих процессов, его экстремум, совпал с завершением последнего события африканской гляциоэры - байконурского гляциопериода . Ускорение эволюции в течение африканской гляциоэры особенно заметно на фоне длительных эволюционных процессов, которые характеризовали Великую ледниковую паузу.

Гондванская гляциоэра сопровождалась массовым завоеванием организмами новых экологических пространств: пелагиали (граптолиты, эндоцератиды, актиноцератоиды, рыбы, ящеры и др.), суши (разнообразные растения, леса, земноводные, пресмыкающиеся) и тропосферы (летающие насекомые). Позднеордовикское массовое вымирание не было внезапной и кратковременной катастрофой, как оно обычно представляется. Его подготовил ряд предшествующих оледенений и биотических событий. Непосредственным толчком к вымиранию послужило Великое хирнантское оледенение.

Главным биотическим событием антарктической гляциоэры стало формирование человечества. Быстрая дивергенция гоминид проходила параллельно с основными оледенениями. Первые представители подотряда человекоподобных появились в олигоцене, а первые три вида из семейства гоминид обнаружены в верхнем миоцене , который характеризовался резким похолоданием. В отложениях еще более холодного плиоцена обнаружено уже 13 видов гоминид, в том числе останки австралопитеков. В первой половине плейстоцена (около 2,4–1,9 млн лет назад) появились первые примитивные виды рода Homо (H. habiles и др.) и простейшие орудия труда. Ко второй половине плейстоцена (около 0,6–0,5 млн лет назад) принадлежат останки H. heidelbergensis и следы систематического использования огня . В конце плейстоцена (около 0,2 млн лет назад, непосредственно перед или во время московско-днепровского оледенения) появился вид H. sapiens .

В заключение еще несколько слов о значении оледенений. Они играли большую роль в развитии биосферы и биоты Земли. Гляциоэры были критическими интервалами в истории биосферы, во время которых процессы эволюции ускорялись, и происходило формирование биосфер и биот новых типов. В гуронскую гляциоэру и после особенно широкое распространение получили цианобактерии, и появился первый кислород в атмосфере. Во время африканской гляциоэры сформировалась биосфера и биота фанерозойского типа. В течение гондванской гляциоэры возникла наземная биота. Растения с животными полностью завоевали сушу. Конечно, неслучайно и то, что формирование человечества произошло во время антарктической гляциоэры.

Palaeogeogr., Palaeoclimat., Palaeoecol. . Fedonkin M. A. Eukaryotisation of the Early Biosphere: a biogeochemical aspect // Geochem. Int. 2009. V. 47. P. 1265–1333.
. Catt J. A., Maslin M. A. Human time scale // The geologic time scale 2012 / Eds. F. Gradstein, J. G. Ogg, M. Schmitz, G. Ogg. Amsterdam, 2012. P. 1011–1032.

Мегаконтинент Гондвана с конца докембрия до начала мезозоя объединял Африку, Южную Америку, Индию, Австралию и Антарктиду.

Напомним, что ожидаемое в несколько раз меньшее повышение средней температуры Земли рассматривается как серьезная катастрофа для человечества.

ЦЕНТР ОЛЕДЕНЕНИЯ - р-н наибольшего скопления и наибольшей мощн. льда, откуда начинается его растекание. Обычно Ц. о. связан с возвышенными, чаще горными центрами. Так, Ц. о. фенноскандинавского ледникового щита являлись Скандинавские . На территории С. Швеции достигал мощн. не менее 2-2,5 км. Отсюда он распространялся по Русской равнине на несколько тысяч км до р-на Днепропетровска. Во плейстоценовых ледниковых эпох на всех континентах существовало много Ц. о., напр., в Европе - Альпийский, Пиренейский, Кавказский, Уральский, Новоземельский; в Азии - Таймырский. Путоранский, Верхоянский и др.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ЦЕНТР ОЛЕДЕНЕНИЯ" в других словарях:

    Каракорум (тюрк. ‒ чёрные каменные горы), горная система в Центральной Азии. Располагается между Куньлунем на С. и Гандисышанем на Ю. Длина около 500 км, вместе с восточным продолжением К. ‒ хребтами Чангченмо и Пангонг, переходящими в Тибетское… … Большая советская энциклопедия

    Энциклопедия Кольера

    Скопления льда, которые медленно движутся по земной поверхности. В некоторых случаях движение льда прекращается, и образуется мертвый лед. Многие ледники продвигаются на некоторое расстояние в океаны или крупные озера, а затем образуют фронт… … Географическая энциклопедия

    Михаил Григорьевич Гросвальд Дата рождения: 5 октября 1921(1921 10 05) Место рождения: Грозный, Горская АССР Дата смерти: 16 декабря 2007(2007 12 16) … Википедия

    Обнимают в жизни Земли промежуток времени от конца третичного периода до переживаемого нами момента. Большинство ученых делит Ч. период на две эпохи: древнейшую ледниковую, делювиальную, плейстоцен или постплиоцен, и новейшую, куда относят… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Куньлунь - Схема хребтов Куньлуня. Голубыми цифрами отмечены реки: 1 Яркенд, 2 Каракаш, 3 Юрункаш, 4 Керия, 5 Карамуран, 6 Черчен, 7 Хуанхэ. Розовыми цифрами отмечены хребты, см табл.1 Куньлунь, (Куэнь Лунь) одна из крупнейших горных систем Азии,… … Энциклопедия туриста

    Алтай (республика) Республика Алтай республика в составе Российской Федерации (см. Россия), расположена на юге Западной Сибири. Площадь республики составляет 92,6 тыс. кв. км, население 205,6 тысяч человек, в городах живет 26% населения (2001). В … Географическая энциклопедия

    Горы Терскей Ала Тоо в районе с.Тамг … Википедия

    Катунский хребет - Катунские Белки География Хребет расположен у южных границ Республики Алтай. Это высочайший хребет Алтая, центральная часть которого на протяжении 15 километров не опускается ниже 4000 м, а средняя высота варьируется в районе 3200 3500 метров над … Энциклопедия туриста

Одна из загадок Земли, наравне с возникновением на ней Жизни и вымирания в конце мелового периода динозавров, это – Великие Оле­денения.

Есть мнение, что оледенения повторяются на Земле регулярно через каждые 180-200 млн. лет. Следы оледенений известны в отложениях, которым миллиарды и сотни миллионов лет назад – в кембрии, в карбоне, в триасе-перми. О том, что они могли быть, «говорят» так называемые тиллиты , породы, очень схожие с мореной последнего, точнее последних оледенений . Это остатки древних отложений ледников, состоящие из глинистой массы с включениями крупных и мелких исцарапанных при движении (штрихованных) валунов.

Отдельные слои тиллитов , находимых даже в экваториальной Африке, могут достигать мощности десятков и даже сотен метров !

Признаки оледенений обнаружены на разных материках – в Австралии, Южной Америке, Африке и Индии , что используется учёными для реконструкции палеоконтинентов и часто приводят в подтверждение теории тектоники плит .

Следы древних оледенений свидетельствуют о том, что оледенения континентального масштаба – это совсем не случайный феномен, это закономерное природное явление, возникающее при определённых условиях .

Последний из ледниковых периодов начался почти миллион лет назад, в четвертичное время, или четвертичный период, плейстоцен и ознаменовался обширным распространением ледников – Великим Оледенением Земли .

Под мощными, многокилометровыми покровами льда оказались северная часть Северо-Американского континента – Северо-Американский ледниковый щит, достигавший мощности до 3.5 км и простиравшийся примерно до 38° северной широты и значительная часть Европы, на который (ледниковый покров мощностью до 2.5-3 км). На территории России ледник спускался двумя громадными язы­ками по древним долинам Днепра и Дона.

Частично оледенение охватило и Сибирь – там в основном было так называемое «горно-долинное оледенение», когда ледники не покрывали все пространство мощным покровом, а были лишь в горах и предгорных долинах, что связано с резко-континентальным климатом и низкими температурами в Восточной Сибири. А вот почти вся Западная Сибирь, в связи с тем, что прошло подпруживание рек, и прекратился их сток в Северный Ледовитый океан, оказалось под водой, и представляла собой огромное море-озеро.

В Южном полушарии подо льдом, как и сейчас, находился весь Антарктический материк.

В период максимального распространения четвертичного оледенения ледники покрывали свыше 40 млн. км 2 около четверти всей поверхности материков.

Достигнув наибольшего развития около 250 тыс. лет назад, четвертичные ледники Северного полушария стали постепенно сокращаться, так как период оледенения не был непрерывным на протяжении всего четвертичного периода .

Существуют и геологические, и палеоботанические и иные доказательства того, что ледники несколько раз исчезали, сменяясь эпохами межледниковья , когда климат был даже теплее современного. Однако на смену теплым эпохам вновь приходили похолодания, и ледники распространялись вновь.

Сейчас мы живем, по-видимому, в конце четвертой эпохи четвертичного оледенения.

А вот в Антарктиде оледенение возникло за миллионы лет до того времени, как появились ледники в Северной Америке и Европе. Помимо климатических условий этому способствовал издавна существовавший здесь высокий материк. Кстати сейчас, в связи с тем, что толща ледника Антарктиды огромна, материковое ложе «ледяного континента» кое-где находится ниже уровня моря…

В отличие от древних ледниковых покровов Северного полушария, которые то исчезали, то возникали вновь, Антарктический ледниковый покров мало изменялся в своих размерах. Максимальное оледенение Антарктиды было больше современного всего в полтора раза по объему, и ненамного больше по площади.

Теперь о гипотезах… Гипотез, почему происходят оледенения, и были ли они вообще, сотни, если не тысячи!

Обычно выдвигаются следующие основные научные гипотезы :

  • Вулканические извержения, приводящие к уменьшению прозрачности атмосферы и похолоданию на всей территории Земли;
  • Эпохи орогенеза (горообразования);
  • Уменьшение количества углекислого газа в атмосфере, что снижает «парниковый эффект» и приводит к похолоданию;
  • Цикличность активности Солнца;
  • Изменения положения Земли относительно Солнца.

Но, тем не менее, причины оледенений окончательно так и не выяснены!

Предполагают, например, что оледенение начинается, когда при увеличении расстояния между Землей и Солнцем, вокруг которого она вращается по слегка вытянутой орбите, уменьшается количество солнечного тепла, получаемого нашей планетой, т.е. оледенение наступает при прохождении Землей точки орбиты, наиболее далеко отстоящей от Солнца.

Однако астрономы считают, что одних лишь изменений количества солнечного излучения, попадающего на Землю, недостаточно, чтобы начался ледниковый период. Видимо, имеет значение и колебание активности самого Солнца, что является периодическим, циклическим процессом, и изменяется через каждые 11-12 лет, с цикличностью 2-3 года и 5-6 лет. А самые большие циклы активности, как установил советский географ А.В. Шнитников – примерно 1800-2000 лет.

Есть также и гипотеза, что возникновение ледников связано с некими участками Вселенной, через которые проходит наша Солнечная система, двигаясь со всей Галактикой, то ли заполненные газом, то ли «облаками» космической пыли. И вероятно, что «космическая зима» на Земле наступает, когда земной шар находится в точке, наиболее удаленной от центра нашей Галактики, где имеются скопления «космической пыли» и газа.

Следует отметить, что обычно перед эпохами похолоданий всегда «идут» эпохи потепления, и есть, например, гипотеза, что Северный Ледовитый океан, вследствие потепления, временами полностью освобождается ото льда (между прочим, это происходит и сейчас), с поверхности океана усиленное испарение, потоки влажного воздуха направляются к полярным областям Америки и Евразии, и над холодной поверхностью Земли выпадает снег, не успевающий растаять за короткое и холодное лето. Так на материках и возникают ледниковые покровы.

Но, когда в результате превращения части воды в лед, уровень Мирового океана понижается на десятки метров, тёплый Атлантический океан перестаёт сообщаться с Северным Ледовитым океаном, и тот снова постепенно покрывается льдом, испарение с его поверхности резко прекращается, снега на материках выпадает всё меньше и меньше, «питание» ледников ухудшается, и ледниковые покровы начинают таять, а уровень Мирового океана вновь повышается. И снова Северный Ледовитый океан соединяется с Атлантическим, и снова ледяной покров начал постепенно исчезать, т.е. цикл развития очередного оледенения начинается заново.

Да, все эти гипотезы вполне возможны , но пока ни одна из них не может быть подтверждена серьезными научными фактами.

Поэтому одна из главных, основополагающих гипотез – это изменение климата на самой Земле, что связано с вышеупомянутыми гипотезами .

Но вполне возможно, что процессы оледенения связаны с совокупным воздействием различных природных факторов , которые могли действовать и совместно, и сменять друг друга , и важно то, что, начавшись, оледенения, как «заведённые часы», уже развиваются самостоятельно, по своим законам, иногда даже «игнорируя» некоторые климатические условия и закономерности.

И ледниковый период, начавшийся в Северном полушарии около 1 млн. лет назад, ещё не завершился , и мы, как уже было сказано, живем в более тёплом промежутке времени, в межледниковье .

На протяжении всей эпохи Великих Оледенений Земли льды то отступали, то вновь надвигались. На территории и Америки, и Европы было, по-видимому, четыре глобальные ледниковые эпохи, между которыми были сравнительно теплые периоды.

А вот полное отступление льдов произошло всего лишь около 20 – 25 тыс. лет назад , но в некоторых районах льды задержались ещё дольше. Из района современного Санкт-Петербурга ледник отступил только 16 тыс. лет назад, а кое-где на Севере небольшие ос­татки древнего оледенения сохранились и до сих пор.

Отметим, что современные ледники не могут идти ни на какое срав­нение с древним оледенением нашей планеты – они за­нимают лишь около 15 млн. кв. км, т. е. менее одной тридцатой части земной поверхности.

Как же можно определить, а было ли в данном месте Земли оледенение, или нет? Обычно это достаточно легко определить по своеобразным формам географического рельефа и горным породам.

На полях и в лесах России часто встречаются большие скопления огромных валунов, гальки, глыб, песков и глин. Они обычно лежат прямо на поверхности, но их можно увидеть и в обрывах оврагов, и в склонах речных долин.

Кстати, одним первым, кто попытался объяснить, как образовались эти отложения, был выдающий географ и анархист-теоретик, князь Петр Алексеевич Кропоткин. В своем труде «Исследования о ледниковом периоде» (1876 г.) он утверждал, что территорию России некогда покрывали огромные ледяные поля.

Если мы посмотрим на физико-географическую карту Европейской России, то в расположении холмов, возвышенностей, котловин и долин крупных рек можно заметить некоторые закономерности. Так, например Ленинградская и Новгородская области с юга и востока как бы ограничены Валдайской возвышенностью , имеющей вид дуги. Это как раз тот рубеж, где в далёком прошлом остановился огромный ледник, наступавший с севера.

К юго-востоку от Валдайской возвышенности расположена слегка извилистая Смоленско-Московская возвышенность, протянувшаяся от Смоленска до Переславля-Залесского. Это ещё одна из границ распространения покровных ледников.

На Западно-Сибирской равнине также видны многочисленные холмистые извилистые возвышенности – «гривы», также свидетельства деятельности древних ледников, точнее ледниковых вод. Много следов остановок движущихся ледников, стекавших по склонам гор в крупные котловины, обнаружено в Средней и Восточной Сибири.

Трудно представить себе льды толщиной в несколько километров на месте нынешних городов, рек и озёр, но, тем не менее, ледниковые плато не уступали по высоте Уралу, Карпатам или Скандинавским горам. Эти гигантские и к тому же подвижные массы льда оказывали влияние на всю природную среду – рельеф, ландшафты, речной сток, почвы, растительность и животный мир.

Следует отметить, что на территории Европы и Европейской части России от геологических эпох, предшествующих четвертичному периоду – палеогена (66-25 млн. лет) и неогена (25-1.8 млн. лет) практически не сохранилось никаких горных пород, они были полностью размыты и переотложены во время четвертичного периода, или как его часто называет, плейстоцена.

Ледники зародились и двигались со стороны Скандинавии, Кольского полуострова, Полярного Урала (Пай-Хоя) и островов Северного Ледовитого океана . И практически все геологические отложения, которые мы видим на территории Москвы – морена, точнее моренные суглинки, пески различного происхождения (водно-ледниковые, озерные, речные), огромные валуны, а также покровные суглинки – все это свидетельство мощного воздействия ледника .

На территории Москвы можно выделить следы трех оледенений (хотя насчитывается их гораздо больше – разные исследователи выделяют от 5 до нескольких десятков периодов наступлений и отступлений льда):

  • окское (около 1 млн. лет назад),
  • днепровское (около 300 тыс. лет назад),
  • московское (примерно 150 тыс. лет назад).

Валдайский же ледник (исчез всего-навсего 10 – 12 тыс. лет назад) до Москвы «не дошел», и для отложений этого периода характерны водно-ледниковые (флювио-гляциальные) отложения – в основном пески Мещерской низменности.

А сами названия ледников соответствуют названиям тех мест, до которых доходили ледники – до Оки, Днепра и Дона, Москва-реки, Валдая, и т. п.

Так как мощность ледников достигала почти 3 км, можно себе представить, какую колоссальную работу он совершал! Некоторые возвышенности и холмы на территории Москвы и Московской области – это мощные (до 100 метров!) отложения, которые «принес» ледник.

Наиболее известны, например Клинско-Дмитровская моренная гряда , отдельные возвышенности на территории Москвы (Воробьевы горы и Теплостанская возвышенность ). Огромные валуны, весом до нескольких тонн (например, Девичий камень в Коломенском) – тоже результат работы ледника.

Ледники сглаживали неровности рельефа: разрушали возвышенности и кряжи, а образовавшимися обломками горных пород заполняли понижения - долины рек и озёрные котловины, перенося огромные массы каменных обломков на расстояние более 2 тыс. км.

Однако огромные массы льда (учитывая его колоссальную толщину) столь сильно давили на подстилающие горные породы, что даже самые крепкие из них не выдерживали и разрушались.

Их обломки вмораживались в тело движущегося ледника и, словно наждаком, на протяжении десятков тысяч лет царапали скалы, сложенные гранитами, гнейсами, песчаниками и другими породами, вырабатывая в них углубления. До сих пор сохранились многочисленные ледниковые борозды, «шрамы» и ледниковая полировка на гранитных скалах, а также длинные ложбины в земной коре, занятые впоследствии озёрами и болотами. Примером могут служить бесчисленные впадины озёр Карелии и Кольского полуострова.

Но ледники выпахивали на своём пути далеко не все горные породы. Разрушению подвергались в основном те области, где ледниковые покровы зарождались, росли, достигали толщины более 3 км и откуда они начинали своё движение. Главным центром оледенения в Европе была Фенноскандия, включающая Скандинавские горы, плоскогорья Кольского полуострова, а также плоскогорья и равнины Финляндии и Карелии.

По пути своего продвижения лёд насыщался обломками разрушенных горных пород, и они постепенно скапливались как внутри ледника, так и под ним. Когда лёд таял, массы обломков, песка и глины оставались на поверхности. Особенно активным был этот процесс, когда движение ледника прекращалось и начиналось таяние его обломков.

У края ледников, как правило, возникали водные потоки, двигавшиеся по поверхности льда, в теле ледника и под толщей льда. Постепенно они сливались, образуя целые реки, которые за тысячи лет формировали узкие долины и перемывали множество обломочного материала.

Как уже было сказано, формы ледникового рельефа весьма разнообразны. Для моренных равнин характерно множество гряд и валов, обозначающих места остановок движущихся льдов и основной формой рельефа среди них являются валы конечных морен, обычно это невысокие дугообразные гряды, сложенные песком и глиной с примесью валунов и гальки. Понижения между грядами часто бывают заняты озёрами. Иногда среди моренных равнин можно увидеть отторженцы – глыбы размером в сотни метров и весом в десятки тонн, гигантские куски ложа ледника, перенесённые им на огромные расстояния.

Ледники нередко перегораживали течения рек и возле таких «плотин» возникали огромные озёра, заполняющие понижения речных долин и впадины, что часто меняло направление стока рек. И хотя такие озёра существовали сравнительно недолго (от тысячи до трех тысяч лет), на их дне успевали накапливаться озёрные глины , слоистые осадки, посчитав слои которых, можно четко выделить периоды зимы и лета, а также сколько лет эти осадки накапливались.

В эпоху, последнего, валдайского оледенения возникли Верхневолжские приледниковые озёра (Молого-Шекснинское, Тверское, Верхне-Моложское и др). Сначала их воды имели сток на юго-запад, но с отступанием ледника они получили возможность стока на север. Следы Молого-Шекснинского озера остались в виде террас и береговых линий на высоте около 100 м.

Весьма многочисленны следы древних ледников в горах Сибири, Урала, Дальнего Востока. В результате древнего оледенения, 135-280 тысяч лет назад, появились острые пики гор – «жандармы», на Алтае, в Саянах, Прибайкалье и Забайкалье, на Становом нагорье. Здесь преобладал так называемый «сетчатый тип оледенения», т.е. если бы можно было посмотреть с высоты птичьего полёта, то можно было бы увидеть, как на фоне ледников возвышаются свободные ото льда плато и вершины гор.

Следует отметить, что в периоды ледниковых эпох на части территории Сибири располагались довольно крупные ледяные массивы, например на архипелаге Северная Земля, в горах Бырранга (полуостров Таймыр), а также на плато Путорана на севере Сибири .

Обширное горно-долинное оледенение было 270-310 тысяч лет назад на Верхоянском хребте, Охотско-Колымском нагорье и в горах Чукотки . Эти области принято считать центрами оледенений Сибири .

Следы этих оледенений – многочисленные чашеобразные углубления горных вершин – цирки или кары , огромные моренные валы и озёрные равнины на месте вытаявшего льда.

В горах так же, как и на равнинах, возникали озёра у ледяных плотин, периодически озёра переполнялись, и гигантские массы воды через невысокие водоразделы с невероятной скоростью устремлялись в соседние долины, врезаясь в них и образуя огромные каньоны и ущелья. Например на Алтае, в Чуйско-Курайской впадине, до сих пор сохранились «гигантская рябь», «котлы высверливания», ущелья и каньоны, огромные глыбы-отторженцы, «сухие водопады» и другие следы потоков воды, вырывавшихся из древних озёр «всего- навсего» 12-14 тыс. лет назад.

«Вторгаясь» с севера на равнины Северной Евразии, ледниковые покровы то проникали далеко на юг по понижениям рельефа, то останавливались у каких-либо препятствий, например, возвышенностей.

Наверное, пока нельзя точно определить, какое из оледенений было «самым великим», однако, известно, например, что валдайский ледник по своей площади резко уступал днепровскому.

Различались и ландшафты у границ покровных ледников. Так, в окскую эпоху оледенения (500-400 тыс. лет назад) к югу от них располагалась полоса арктических пустынь шириной около 700 км – от Карпат на западе до Верхоянского хребта на востоке. Ещё дальше, на 400-450 км южнее, простиралась холодная лесостепь , где могли расти только такие неприхотливые деревья, как лиственницы, берёзы и сосны. И лишь на широте Северного Причерноморья и Восточного Казахстана начинались сравнительно тёплые степи и полупустыни.

В эпоху днепровского оледенения ледники были существенно больше. Вдоль окраины ледяного покрова тянулась тундростепь (сухая тундра) с очень суровым климатом. Среднегодовая температура приближалась к минус 6°С (для сравнения: в Подмосковье среднегодовая температура в настоящее время около +2,5°С).

Открытое пространство тундры, где зимой было мало снега и стояли сильные морозы, растрескивалось, образуя, так называемые «мерзлотные полигоны», которые в плане напоминают по форме клин. Их и называют «ледовые клинья, причём в Сибири они часто достигают высоты десяти метров! Следы этих «ледовых клиньев» в древних ледниковых отложениях «говорит» о суровом климате. Следы мерзлотного, или криогенного воздействия заметы и в песках, это часто нарушенные, как бы «рваные» слои, часто с высоким содержанием минералов железа.

Водно-ледниковые отложения со следами криогенного воздействия

Последнее «Великое Оледенение» изучается уже более 100 лет. Многие десятки лет упорного труда выдающихся исследователей ушли на сбор данных о его распространении на равнинах и в горах, на картирование конечно-моренных комплексов и следов ледниково-подпрудных озёр, ледниковых шрамов, друмлинов, участков «холмистой морены».

Правда есть и исследователи, которые вообще отрицают древние оледенения, и считают ледниковую теорию ошибочной. По их мнению, никакого оледенения вообще не было, а было «холодное море, по которому плавали айсберги», а все ледниковые отложения – это лишь донные осадки этого мелководного моря!

Другие исследователи, «признавая общую справедливость теории оледенений», тем не менее, сомневаются в правильности вывода о грандиозных масштабах оледенений прошлого, и особенно сильное недоверие вызывает у них вывод о ледниковых щитах, налегавших на полярные континентальные шельфы, они считают, что были «небольшие ледниковые шапки арктических архипелагов», «голая тундра» или «холодные моря», а в Северной Америке, где уже давно восстановлен крупнейший в Северном полушарии «лаврентьевский ледниковый щит», были лишь «группы ледников, слившихся основаниями куполов».

Для Северной Евразии этими исследователями признаются лишь Скандинавский ледниковый щит и изолированные «ледниковые шапки» Полярного Урала, Таймыра и плато Путорана, а в горах умеренных широт и Сибири – только долинные ледники.

А некоторые учёные, наоборот, «реконструируют» в Сибири «гигантские ледниковые покровы», по своим размерам и по строению не уступающие Антарктическому.

Как мы уже отмечали, в Южном полушарии Антарктический ледниковый покров распространялся на весь материк, включая его подводные окраины, в частности области морей Росса и Уэдделла.

Максимальная высота ледникового покрова Антарктиды составляла 4 км, т.е. была близка к современной (сейчас около 3.5 км), площадь льда возрастала до почти 17 миллионов квадратных километров, а общий объём льда достигал 35-36 миллионов кубических километров.

Ещё два больших ледниковых покрова были в Южной Америке и Новой Зеландии.

Патагонский ледниковый покров располагался в Патагонских Андах , их предгорьях и на соседнем континентальном шельфе. О нём сегодня напоминают живописный фьордовый рельеф чилийского побережья и остаточные ледниковые покровы Анд.

«Южноальпийский комплекс» Новой Зеландии – был уменьшенной копией Патагонского. Он имел ту же форму и так же выдвигался на шельф, на побережье им выработана система похожих фьордов.

В Северном полушарии в периоды максимального оледенения мы бы увидели огромный Арктический ледниковый покров , возникавший в результате объединения Североамери­канского и Евразийского покровов в единую ледниковую систему, причём важную роль играли плавучие шельфовые ледники, особенно Центрально-Арктический, покрывавший всю глубоководную часть Северного Ледовитого океана.

Крупнейшими элементами Арктического ледникового покрова были Лаврентьевский щит Северной Америки и Карский щит арктической Евразии , они имели форму гигантских плоско-выпуклых куполов. Центр первого из них располагался над юго-западной частью Гудзонова залива, вершина поднималась на высоту более 3 км, а его восточный край выдвигался до внешнего края континентального шельфа.

Карский ледниковый щит занимал всю площадь современных Баренцева и Карского морей, его центр лежал над Карским морем, а южная краевая зона покрывала весь север Русской равнины, Западной и Средней Сибири.

Из других элементов Арктического покрова особого внимания заслуживает Восточно-Сибирский ледниковый щит , который распространялся на шельфы морей Лаптевых, Восточно-Сибирского и Чукотского и был больше Гренландского ледникового щита . Он оставил следы в виде крупных гляциодислокаций Новосибирских островов и района Тикси , с ним же связаны и грандиозные ледниково-эрозионные формы острова Врангеля и Чукотского полуострова .

Итак, последний ледниковый покров Северного полушария, состоял из более чем десятка больших ледниковых щитов и множества более мелких, а также из объединявших их шельфовых ледников, плававших в глубоком океане.

Промежутки времени, в которые ледники исчезали, или сокращались на 80-90%, называют межледниковьями. Освободившиеся ото льда ландшафты в условиях относительно тёплого климата преображались: тундра отступала к северному побережью Евразии, а тайга и широколиственные леса, лесостепи и степи занимали положение, близкое к современному.

Таким образом, на протяжении последнего миллиона лет природа Северной Евразии и Северной Америки неоднократно меняла свой облик.

Валуны, щебень и песок, вмороженные в придонные слои движущегося ледника, выполняя роль гигантского «напильника», сглаживали, шлифовали, царапали граниты и гнейсы, а подо льдом формировались своеобразные толщи валунных суглинков и песков, отличающиеся высокой плотностью, связанной с воздействием ледниковой нагрузки – основная, или донная морена.

Так как размеры ледника определяются равновесием между количеством ежегодно выпадающего на него снега, который и превращается в фирн, а потом в лёд, и того что, не успевает растаять и испариться за теплые сезоны, то при потеплении климата края ледников отступают на новые, «равновесные рубежи». Концевые части ледниковых языков перестает двигаться и постепенно тают, а включенные в лёд валуны, песок и суглинок высвобождаются, образуя вал, повторяющий очертания ледника – конечную морену ; другая же часть обломочного материала (в основном песок и глинистые частицы) выносится потоками талой воды и отлагается вокруг в виде флювиогляциальных песчаных равнин (зандров ).

Подобные потоки действуют и в глубине ледников, заполняя флювиогляциальным материалом трещины и внутриледниковые каверны. После стаивания ледниковых языков с такими заполненными пустотами на земной поверхности, поверх вытаявшей донной морены остаются хаотические нагромождения холмов различной формы и состава: яйцевидные (при виде сверху) друмлины , вытянутые, как железнодорожные насыпи (вдоль оси ледника и перпендикулярно конечным моренам) озы и неправильной формы камы .

Очень четко все эти формы ледникового ландшафта представлены в Северной Америке: граница древнего оледенения здесь маркирована конечно-моренным валом с высотами до пятидесяти метров, протянувшимся поперек всего континента от восточного его побережья до западного. К северу от этой «Великой ледниковой стены» ледниковые отложения представлены в основном мореной, а к югу от нее – «плащом» флювиогляциальных песков и галечников.

Как для территории Европейской части России выделены четыре эпохи оледенения, так и для Центральной Европы также выделены четыре ледниковые эпохи, названные по соответствующим альпийским речкам – гюнц, миндель, рисс и вюрм , а в Северной Америке – небраскское, канзасское, иллинойсское и висконсинское оледенения.

Климат перигляциальных (окружающих ледник) территорий был холодным и сухим, что полностью подтверждается палеонтологическими данными. В этих ландшафтах возникает весьма специфическая фауна с сочетанием криофильных (холодолюбивых) и ксерофильных (сухолюбивых) растений тундростепь.

Сейчас похожие природные зоны, сходные с перигляциальными, сохранились в виде так называемых реликтовых степей – островков среди таежного и лесотундрового ландшафта, например, так называемые аласы Якутии, южные склоны гор северо-восточной Сибири и Аляски, а также в холодные засушливые высокогорья Центральной Азии.

Тундростепь отличалась тем, что её травяной ярус формировали в основном не мхи (как в тундре), а злаки , и именно здесь складывался криофильный вариант травянистой растительности с очень высокой биомассой пастбищных копытных и хищников – так называемой «мамонтовой фауной» .

В её составе были причудливо смешаны различные виды животных, как характерных для тундры северный олень, олень-карибу, овцебык, лемминги , для степей – сайгак, лошадь, верблюд, бизон, суслики , а также мамонты и шерстистые носороги, саблезубый тигр – смилодон, и гигантская гиена .

Следует отметить, что многие климатические изменения повторялись как бы «в миниатюре» на памяти человечества. Это так называемые «Малые ледниковые периоды» и «межледниковья».

Например, во время так называемого «Малого ледникового периода» с 1450 по 1850 года ледники повсеместно наступали, и их размеры превосходили современные (снежный покров появлялся, например, в горах Эфиопии, где его сейчас нет).

А в предшествовавший «Малому ледниковому периоду» Атлантический оптимум (900-1300 г.г.) ледники, наоборот, сократились, и климат был заметно мягче нынешнего. Вспомним, что именно в эти времена викинги назвали Гренландию «Зеленой землей», и даже заселили её, а также доходили на своих ладьях до побережья Северной Америки и острова Ньюфаундленд. А новгородские купцы-ушкуйники проходили «Северным морским путем» до Обской губы, основав там город Мангазею.

А последнее отступание ледников, начавшееся свыше 10 тысяч лет назад, хорошо осталось в памяти людей, отсюда и легенды о Всемирном потопе, так огромнее количество талых вод устремилось вниз, на юг, частыми стали дожди и наводнения.

В далёком прошлом рост ледников происходил в эпохи с пониженной температурой воздуха и увеличенной увлажненностью, такие же условия складывались и в последние века прошлой эры, и в середине прошлого тысячелетия.

А около 2.5 тысяч лет назад началось значительное похолодание климата, арктические острова покрылись ледниками, в странах Средиземноморья и Причерноморья на рубеже эр климат был более холодным и влажным, чем сейчас.

В Альпах в I тысячелетии до н. э. ледники выдвинулись на более низкие уровни, загромоздили горные перевалы льдами и разрушили некоторые высоко расположенные селения. Именно в эту эпоху резко активизируются и растут ледники на Кавказе.

Но к концу I тысячелетия опять началось потепление климата, отступили горные ледники в Альпах, на Кавказе, в Скандинавии и Исландии.

Климат начал снова серьезно меняться лишь в XIV веке, в Гренландии стали быстро расти ледники, летнее оттаивание грунтов становилось всё более кратковременным, и к концу века здесь прочно установилась вечная мерзлота.

С конца XV века начался рост ледников во многих горных странах и полярных районах и после сравнительно теплого XVI века наступили суровые столетия, и получившие название «Малого ледникового периода». На юге Европы часто повторялись суровые и продолжительные зимы, в 1621 и 1669 годах замерзал пролив Босфор, а в 1709 году у берегов замерзало Адриатическое море. Но «Малый ледниковый период» завершился во второй половине XIX века и началась сравнительно теплая эпоха, которая продолжается и сейчас.

Отметим, что потепление XX столетия особенно четко выражено в полярных широтах Северного полушария, а колебания ледниковых систем характеризуются процентной долей наступающих, стационарных и отступающих ледников.

Так, например, для Альп имеются данные, охватывающие всё прошедшее столетие. Если доля наступающих альпийских ледников в 40-50-х годах ХХ века была близка к нулю, то в середине 60-х ХХ века здесь наступало около 30%, а в конце 70-х ХХ века – 65-70% обследованных ледников.

Подобное их состояние свидетельствует о том, что антропогенное (техногенное) увеличение содержания двуокиси углерода, метана и других газов и аэрозолей в атмосфере в XX столетии никак не повлияло на нормальный ход глобальных атмосферных и ледниковых процессов. Однако в конце прошлого, ХХ века повсюду в горах ледники стали отступать, стали таять и льды Гренландии, что связано с потеплением климата, и что особенно усилилась в 1990-х годах.

Известно, что возросшее ныне техногенное количество выбросов в атмосферу углекислого газа, метана, фреона и различных аэрозолей вроде бы как способствует уменьшению солнечной радиации. В связи с этим и появились «голоса» сначала журналистов, потом политиков, а потом и учёных о начале «новой ледниковой эпохи». Экологи «забили тревогу», опасаясь «грядущего антропогенного потепления» из-за постоянного роста углекислого газа и иных примесей в атмосфере.

Да, хорошо известно, что увеличение СО 2 ведет к увеличению количества задерживаемого тепла и тем самым повышает температуру воздуха у поверхности Земли, образуя пресловутый «парниковый эффект».

Такое же воздействие оказывают и некоторые другие газы техногенного происхождения: фреоны, оксиды азота и оксиды серы, метан, аммиак. Но, тем не менее, далеко не вся двуокись углерода остается в атмосфере: 50-60% промышленных выбросов СО 2 попадают в океан, где быстро усваиваются животными (кораллами в первую очередь), и конечно же усваиваются и растениями вспомним процесс фотосинтеза: растения поглощают углекислый газ и выделяют кислород! Т.е. чем больше углекислого газа – тем лучше, тем выше процент кислорода в атмосфере! Кстати, такое уже было в истории Земли, в каменноугольном периоде… Поэтому даже многократный рост концентрации СО 2 в атмосфере не сможет привести к такому же многократному росту температуры, так как существует определённый природный механизм регулирования, резко замедляющий парниковый эффект при высоких концентрациях СО 2 .

Так что все многочисленные «научные гипотезы» о «парниковом эффекте», «повышении уровня Мирового океана», «изменения течения Гольфстрима», и естественно «грядущего Апокалипсиса» большей частью навязаны нам «сверху», политиками, некомпетентными учеными, неграмотными журналистами или просто аферистами от науки. Чем больше запугаешь население – тем проще сбывать товар и управлять…

А на самом деле происходит обычный природный процесс – один этап, одна климатическая эпоха сменяется другой, и ничего странного в этом нет… А то что происходят природные катастрофы, и что их якобы стало больше – смерчей, наводнений и прочее – так еще 100-200 лет назад огромные территории Земли были просто незаселенны! А сейчас людей более 7 млрд., и живут они часто там, где именно и возможны наводнения и смерчи – по берегам рек и океанов, в пустынях Америки! Тем более, вспомним, что природные катаклизмы были всегда, и даже губили целые цивилизации!

А что касается мнения учёных, на которые так любят ссылаться и политики, и журналисты… Ещё в 1983 году американские социологи Рэндалл Коллинз и Сэл Рестиво в своей знаменитой статье «Пираты и политики в математике» написали открытым текстом: «…Не существует неизменного набора норм, которые руководят поведением ученых. Неизменна лишь деятельность ученых (и соотносимых с ними других типов интеллектуалов), направленная на стяжание богатства и славы, а также на получение возможности контролировать поток идей и навязывать свои собственные идеи другим… Идеалы науки не предопределяют научного поведения, но возникают из борьбы за индивидуальный успех в различных условиях соревнования …».

И ещё немного о науке… Различные крупные компании часто выделяют гранты на проведение так называемых «научных исследований» в тех или иных областях, но возникает вопрос – насколько человек, проводящий исследование, компетентен в данной области? Почему из сотен учёных был выбран именно он?

И если некому учёному, «некая организация» заказывает например «некое исследование по безопасности ядерной энергетики», то, само собой разумеется, что этот учёный будет вынужден «прислушиваться» к заказчику, так как у него есть «вполне определенные интересы», и понятно, что «свои выводы» он, скорее всего, будет «подлаживать» под заказчика, так как главный вопрос – это уже не вопрос научных исследований а что желает заказчик получить, какой результат . И если результат заказчика не устроит , то и этого ученого больше не пригласят , и ни в одном «серьезном проекте», т.е. «денежном», он более участвовать не будет, так как пригласят другого ученого, более «покладистого»… Многое, безусловно, зависит и от гражданской позиции, и профессионализма, и репутации как ученого… Но не будем забывать, сколько в России «получают» ученые… Да в мире, в Европе и в США, ученый живет в основном на гранты… А любой учёный тоже «хочет кушать».

Кроме того – данные и мнения одного ученого, пусть и крупного специалиста в своей области – это еще не факт! А вот если исследования подтверждаются какими-нибудь научными группами, институтами, лабораториями, то лишь тогда исследования могут быть достойны серьёзного внимания .

Если конечно эти «группы», «институты» или «лаборатории» не финансировались заказчиком данного исследования или проекта…

А.А. Каздым,
кандидат геолого-минералогических наук, член МОИП

ВАМ ПОНРАВИЛСЯ МАТЕРИАЛ? ПОДПИСЫВАЙТЕСЬ НА НАШУ EMAIL-РАССЫЛКУ:

Мы будем присылать вам на email дайджест самых интересных материалов нашего сайта.

Днепровское оледенение
было максимальным в среднем плейстоцене (250-170 или 110 тыс. лет назад). Оно состояло из двух или трех стадий.

Иногда последнюю стадию Днепровского оледенения выделяют в самостоятельное московское оледенение (170-125 или 110 тыс. лет назад), а разделеющий их период относительно теплого времени рассматривают как одинцовское межледниковье.

В максимальную стадию этого оледенения значительная часть Русской равнины была занята ледниковым покровом, который узким языком по долине Днепра проникал на юг до устья р. Орели. На большей части данной территории существовала многолетняя мерзлота, а среднегодовая температура воздуха была тогда не выше -5-6°С.
На юго-востоке Русской равнины в среднем плейстоцене произошло так называемое «раннехазарское» повышение уровня Каспийского моря на 40-50 м, которое состояло из нескольких фаз. Их точная датировка неизвестна.

Микулинское межледниковье
Вслед за днепровским оледенением последовало (125 или 110-70 тыс. лет назад). В это время в центральных районах Русской равнины зима была значительно мягче, чем сейчас. Если в настоящее время средние температуры января близки к -10°С, то в микулинское межледниковье они не опускались ниже -3°С.
Микулинскому времени соответствовало так называемое «позднехазарское» повышение уровня Каспийского моря. На севере Русской равнины отмечалось синхронное повышение уровня Балтийского моря, которое соединялось тогда с Ладожским и Онежским озерами и, возможно, Белым морем, а также Северного Ледовитого океана. Общее колебание уровня мирового океана между эпохами оледенения и таяния льдов составляло 130-150 м.

Валдайское оледенение
После микулинского межледниковья наступило , состоящее из ранневалдайского или тверского (70-55 тыс. лет назад) и поздневалдайского или осташковского (24-12:-10 тыс. лет назад) оледенений, разделенных средневалдайским периодом неоднократных (до 5) колебаний температуры, во время которых климат был гораздо холоднее современного (55-24 тыс. лет назад).
На юге Русской платформы раннему валдаю отвечает значительное «аттельское» понижение – на 100-120 метров – уровня Каспийского моря. Вслед за ним последовало «раннехвалынское» повышение уровня моря примерно на 200 м (на 80 м выше первоначальной отметки). Согласно расчетам А.П. Чепалыги (Chepalyga,т1984), поступление влаги в Каспийский бассейн верхнехвалынского времени превышало ее потери приблизительно на 12 куб. км в год.
После «раннехвалынского» повышения уровня моря последовало «енотаевское» понижение уровня моря, а затем вновь «позднехвалынское» повышение уровня моря примерно на 30 м относительно его первоначального положения. Максимум позднехвалынской трансгрессии пришелся, по данным Г.И. Рычагова, на конец позднего плейстоцена (16 тыс. лет назад). Позднехвалынский бассейн характеризовался температурами водной толщи, несколько ниже современных.
Новое понижение уровня моря происходило довольно быстро. Оно достигло максимума (50 м) в самом начале голоцена (0,01-0 млн. лет назад), около 10 тысяч лет назад, и сменилось последним – «новокаспийским» повышением уровня моря примерно на 70 м около 8 тысяч лет назад.
Примерно такие же колебания поверхности воды происходили в Балтийском море и на Северном Ледовитом океане. Общее колебание уровня мирового океана между эпохами оледенения и таяния льдов составляло тогда 80-100 м.

Согласно результатам радиоизотопного анализа более чем 500 различных геологических и биологических образцов, взятых на юге Чили, средние широты на западе Южного полушария испытывали потепления и похолодания в то же самое время, что и средние широты на западе Северного полушария.

Раздел " Мир в плейстоцене. Великие оледенения и исход с Гипербореи " / Одиннадцать оледенений четвертичного периода и ядерные войны


© А.В. Колтыпин, 2010

Климат нашей планеты неоднократно менялся. На сегодняшний день в истории Земли известны три крупные эпохи оледенений (примерно 600 000 и 300 000 лет назад), и сегодня мы живем в последней из них. Эпоха оледенения - это время чередования холодных и теплых периодов, измеряемых десятками тысяч лет, во время которых ледники то покрывают огромные территории, то резко сокращаются. Сейчас у нас межледниковье, но оледенение может еще вернуться. Чем вызваны эпохи оледенения, сказать трудно, существует множество гипотез.

1. Гипотезы о причинах оледенения

Возможно, эпохи оледенения связаны с особенностями положения Солнечной системы на галактической орбите. Существует версия, что они связаны с эпохами горообразования. Сейчас продолжается альпийская эпоха горообразования, триста миллионов лет назад была герцинская эпоха горообразования, а шестьсот миллионов (конец протерозоя - начало кембрия) - байкальская. Эпохи горообразования опять же могут быть связаны с положением Солнечной системы в галактическом пространстве.

В эпоху роста гор суша высокая. Чем выше суша, тем холоднее климат. При высокой суше вода океанов собирается в глубоких впадинах, и малая площадь поверхности водных акваторий приводит к охлаждению Земли. Вода - прекрасный аккумулятор тепла, и чем меньше водная поверхность, тем холоднее. Толчком к началу оледенений могли послужить изменения в расположении теплых и холодных морских течений. Все перечисленные гипотезы требуют дальнейших исследований.

2. Оледенения на территории России

Последняя эпоха оледенений приходится на современный нам четвертичный период, продолжительность которого оценивается в семьсот тысяч - миллион лет. В этом периоде в северном полушарии Земли было несколько эпох покровных оледенений, разделенных эпохами межледниковий. Однако в Гренландии непрерывное оледенение началось уже около 10 миллионов лет назад, а в Антарктиде, по-видимому, еще раньше - 25–30 миллионов лет назад. Гренландия и Антарктида занимают околополюсное положение, и холодные климатические условия там вполне объяснимы.

Сложнее объяснить оледенения значительной части Северной Америки (примерно до широты Нью-Йорка), Европы и Азии до широт Москвы и Воронежа (в разные эпохи), а также Западной Сибири до центра Западно-Сибирской низменности. Исследователи спорят об их количестве, насчитывая по крайней мере четыре оледенения. Льды нарастали, и центрами оледенения для Европы были Скандинавский и Кольский полуострова, Карелия, Новая Земля, Полярный Урал, горы Бырранга на Таймыре, плато Путорана. Мощность льдов была вполне сравнима с антарктическими (в Антарктиде - до 3–4 км, у нас - до 2–3 км).

Ледник - это обязательно движущийся массив. Почему он двигался? Возможно, из-за очень большого давления на контакте с грунтом происходило плавление льда при температурах, близких к нулю. Жесткий, покрытый трещинами ледник растекался под действием собственной тяжести, скользил по расплавленной смазке на юг. Покровные ледники могли подниматься на возвышенности. Последний валдайский ледник перекрывал Валдайскую возвышенность, более ранний, московский - Клинско-Дмитровскую гряду на севере Подмосковья. Еще более ранний, днепровский ледник - так ледники называют в Европейской России - покрывал север Среднерусской возвышенности и огромными языками уходил на юг по Днепровской и Окско-Донской низменностям.

Чтобы образовался ледник, необходим не только холод, но и влага. В Евразии влаги больше на западе, ветра приносят осадки с Атлантического океана. Поэтому юго-западная граница всех оледенений располагалась намного южнее, чем северо-восточная.

3. Причины изостатического поднятия

Когда ледник начинал таять, он распадался на отдельные массивы мертвого льда, примерзал к подстилающей поверхности, со всех сторон от него оттекали талые воды. Последний валдайский ледник растаял около 10 000 лет назад. Льды перестали давить на подстилающую поверхность, и земля начала подниматься. Причем в районах Скандинавского полуострова по обеим сторонам Ботнического залива в Балтике (Швеция и Финляндия) происходит чрезвычайно быстрый рост суши. Это так называемое изостатическое поднятие. Скорость поднятия доходит до 1 метра за 100 лет, что очень быстро. В Антарктиде из-за давления современных ледников глубина океанического шельфа - материковой отмели - около 500 метров, в то время как в среднем на Земле глубина шельфа около 200 метров.

4. Уровень Мирового океана

В периоды оледенений, когда большие массы воды были заключены во льдах, резко понижался уровень Мирового океана. Сегодня исследователи дают следующую оценку: если бы растаяли ледники Антарктиды и Гренландии, то уровень океана повысился бы на 70–75 метров. Древние материковые оледенения Земли были по объему льда отнюдь не меньше, и поэтому о неоднократном понижении уровня Мирового океана в четвертичный период на 75–80 метров можно говорить с полной уверенностью, но, скорее всего, оно было гораздо больше - 100–120 метров, некоторые полагают, что до 200 метров. Разброс данных естественен, так как Земля «дышит»: какие-то участки ее приподнимаются, какие-то опускаются, и эти колебания накладываются на изменения уровня поверхности океана.

К чему приводило изменение уровня Мирового океана? Во-первых, реки текли там, где сейчас море. На затопленной ныне материковой окраине Северного Ледовитого океана можно проследить продолжение Печоры, Северной Двины, Оби и Енисея. В речных песках могут содержаться крупицы золота, касситерита (сырье для добычи олова) и т. д. Песчаные отложения древних рек, протекавших на осушенном в периоды оледенений шельфе в районе индонезийских Зондских островов, дали богатейшие россыпи касситерита. Сейчас оловянную руду добывают с морского дна там, где располагаются ныне подводные речные долины.

Мировой океан не замерз в эпохи оледенения. Вода - самое удивительное, что есть на Земле. Чем больше концентрации соли в морской воде, тем ниже (-1; -1,7 градуса) температура ее замерзания, тем больше времени требуется для образования льда. Морская вода замерзает при температуре своей максимальной плотности, которая еще ниже, чем температура замерзания (-3; -3,5 градуса). Если морская вода остывает до температуры своего замерзания, она, вместо того чтобы замерзнуть, из-за своей повышенной плотности опускается вниз, вытесняя наверх более теплые и легкие воды. Они, остывая до температуры замерзания, становятся более плотными и снова «ныряют» вниз. Такое перемешивание не дает возможности образоваться льду и продолжается до тех пор, пока вся толща воды не достигнет температуры максимальной плотности.

5. Периоды межледниковья

Эпохи оледенения сменялись межледниковьями. Климат в это время мог быть как холоднее, так и теплее современного. Например, в период между московским и валдайским оледенениями климат был более теплым. На широте Москвы росли широколиственные каштановые леса. Лесами была покрыта вся Сибирь вплоть до побережий северных морей, где ныне тундра. Последнее межледниковье продолжается около десяти тысяч лет. Судя по всему, мы прошли его климатический оптимум. 5–6 тысяч лет назад среднегодовая температура была выше на 1–2, может быть, даже на 3 градуса. В эту теплую эпоху ледники в горах, в Гренландии и Антарктиде сократились, а уровень океана, соответственно, был более высоким.

В современную, более холодную эпоху уровень воды в океане вновь понизился из-за консервации воды в выросших ледниках. При этом на поверхности появились коралловые острова, и люди заселили многие из них. Если бы уровень моря оставался высоким, они оставались бы под водой. Точно так же появились на поверхности множество других островов: Фризские острова возле Голландии и Германии, многочисленные острова у побережья Мексики и Техаса в Мексиканском заливе, Арабатская стрелка в Азовском море и другие. То есть соотношение воды, сконцентрированной в ледниках, и воды свободной резко меняет и соотношение суши и моря, и климатическую обстановку Земли. Что впереди? Скорее всего, человечеству предстоит пережить еще одно оледенение.

Глобальные изменения природной среды. Под ред. Н. С. Касимова. М.: Научный мир, 2000

Общие особенности изменений ландшафтов и климата Северной Евразии в кайнозое // Изменение климата и ландшафтов за последние 65 миллионов лет (кайнозой: от палеоцена до голоцена). Под ред. А. А. Величко. М.: ГЕОС. 1999.

Короновский Н.В., Хаин В.Е., Ясаманов Н. А. Историческая геология. М.: Академия, 2006.

Поделиться: