Виды бактерий: вредные и полезные. Бактерии — общая характеристика. Классификация, строение, питание и роль бактерий в природе Бактерии классификация характеристика
По форме все бактерии делятся на 3 группы:
— шаровидные или кокки
— палочковидные или палочки
— извитые формы бактерий.
Кокки имеют округлую, шаровидную, овальную, пламени свечи, ланцетовидную форму и подразделяются на 6 подгрупп исходя из способа соединения.
1 микрококки;
2 диплококки;
3 тетракокки;
4 стрептококки;
5 стафилококки;
6 сарцины.
Все кокки неподвижны, не образуют спор.
Широко распространены в природе. Входят в состав заквасок кисломолочных. Могут быть болезнетворными (ангина, гонорея, менингит).
Палочковидные бактерии имеют вытянутую форму. Длина больше ширины. Легко меняют свою форму исходя из условий жизни, ᴛ.ᴇ. обладают полиморфизмом. Палочки — наиболее распространенная группа среди всех бактерий. Могут быть не болезнетворными, но могут вызывать различные заболевания (тиф, дизентерия).
Палочки бывают подвижными и неподвижными образовывать и необразовывать споры. По способности образования споры палочки делятся на три группы:
— бактерии;
— бациллы;
— клостридии.
Извитые формы бактерий делятся на три группы:
1. вибрионы;
2. спириллы;
3. спирохеты.
Все извитые формы болезнетворные.
Строение и функции клеточной оболочки бактерий.
Клеточная оболочка покрывает клетку снаружи. Это плотная, упругая структура, выдерживающая перепад давления, состоящая из двух частей – наружной части, называемой клеточной стенкой и внутренней части – цитоплазматической мембраны (ЦПМ). И стенка и мембрана имеет поры (отверстия) через которые в клетку проходят питательные вещества и удаляются продукты жизнедеятельности. При этом через поры клеточной стенки питательные вещества проходят по молекулярной массе не более 1000, ᴛ.ᴇ. стенка при питании выполняет функции механического сита. Через поры ЦПМ питательные вещества проходят не по массе, а по мере нужнобности, ᴛ.ᴇ. она обладает полупроницаемостью.
Клеточная оболочка выполняет ряд важнейших функций:
1 – поддерживает форму тела;
2 – защищает клетку от внешних воздействий;
3 – участвует в обмене веществ клетки, ᴛ.ᴇ. пропускает питательные вещества и выделяет продукты жизнедеятельности;
4 – участвует в передвижении клетки. Бактерии, лишенные клеточной оболочки теряют подвижность;
5 – участвуют в образовании капсулы.
По форме все бактерии делятся на 3 группы: — шаровидные или кокки — палочковидные или палочки — извитые формы бактерий. Кокки имеют округлую, шаровидную, овальную, пламени свечи, ланцетовидную форму и подразделяются на 6 подгрупп в зависимости от способа… [читать подробнее].
Микробы, наиболее часто встречающиеся в процессе приготовления пищи, делят на бактерии, плесневые грибы, дрожжи и вирусы. Большинство микробов - одноклеточные организмы, размер которых измеряется в микрометрах - мкм (1/1000 мм) и нанометрах - нм (1/1000 мкм).
Бактерии - одноклеточные, наиболее изученные микроорганизмы размером 0,4-10 мкм. По форме их делят на кокки - микробы шаровидной формы (микрококки, диплококки, тетракокки, сарци-ны, стрептококки, стафилококки), палочки (одиночные, двойные, цепочки), вибрионы, спириллы и спирохеты (изогнутые и спирально извитые формы). Размеры и форма бактерий могут изменяться в зависимости от различных факторов внешней среды (рис. 3).
Рис. 3. Формы бактерий:
1 - микрококки; 2 - стрептококки; 3 - сарцины; 4 - палочки без спор;
5 - палочки со спорами (бациллы); 6 - вибрионы; 7 - спирохеты;
8 - спириллы.
Бактерии покрыты оболочкой, представляющей собой уплотненный слой цитоплазмы, которая придает клетке форму. Наружный слой оболочки у многих бактерий может ослизняться, образуя защитный покров - капсулу. Основной частью клетки является цитоплазма - прозрачная белковая масса, пропитанная клеточным соком. В цитоплазме находятся ядерное вещество, запасные питательные вещества (зерна крахмала, капельки жира, гликоген, белок) и другие клеточные структуры. На поверхности некоторых бактерий (палочковидных) имеются нитевидные образования - жгутики (одиночные, в виде пучка или по всей поверхности), с помощью которых они передвигаются.
Некоторые палочковидные бактерии при неблагоприятных условиях образуют споры (сгущенная цитоплазма, покрытая плотной оболочкой). Споры не нуждаются в питании, не способны размножаться, но сохраняют свою жизнеспособность при высоких температурах, высушивании, замораживании в течение нескольких месяцев (палочка ботулинуса) или даже многих лет (палочка сибирской язвы). Споры погибают при стерилизации (нагревании до 120°С в течение
29 мин). В благоприятных условиях они прорастают в обычную (вегетативную) бактериальную клетку. Спорообразующие бактерии называются бациллами.
Размножаются бактерии путем простого деления. При благоприятных условиях размножение одной клетки протекает в течение 20 -
30 мин. С накоплением вредных продуктов жизнедеятельности бактерий и исчерпанием питательных ресурсов процесс размножения прекращается.
Плесневые грибы- одноклеточные или многоклеточные низшие растительные организмы, в своей жизнедеятельности нуждающиеся в готовых пищевых веществах и в доступе воздуха. Клетки плесневых грибов имеют форму вытянутых переплетающихся нитей - гифов толщиной 1-15 мкм, образующих тело плесени - мицелий (грибницу), состоящий из одной или многих клеток. На поверхности мицелия развиваются плодовые тела, в которых созревают споры (рис. 4).
По строению клетки плесневых грибов отличаются от бактериальных клеток тем, что имеют одно или несколько ядер и вакуолей (полостей, заполненных клеточной жидкостью). Размножаются плесневые грибы с помощью гиф и спорами.
Плесневые грибы широко распространены в природе. Развиваясь на пищевых продуктах, они образуют пушистые налеты разного цвета. Плесневые грибы выделяют вещества, придающие пищевым продуктам плесневелый запах и вкус. Они могут развиваться при низкой влажности (15 %), что объясняет плесневение сухофруктов, сухарей,

Рис. 4. Виды плесневых грибов:
1 - пенициллиум; 2 - аспергиллус; 3 - мукор..
при повышенной концентрации соли и кислот (на соленых и кислых продуктах), при низкой температуре, поражая продукты, хранящиеся в холодильниках.
Среди плесневых грибов есть полезные, используемые при производстве сыров («Рокфор», «Камамбер»), лимонной кислоты и лекарственных препаратов (пенициллин).
Дрожжи - одноклеточные неподвижные микроорганизмы. Клетки дрожжей размером до 15 мкм бывают разной формы: круглые, овальные, палочковидные (рис. 5). Они имеют четко выраженное крупное ядро, вакуоли и различные включения в цитоплазме в виде капелек жира, гликогена и т. д.
Дрожжи размножаются в благоприятных условиях в течение нескольких часов следующими способами: почкованием, спорами (1 - 112 шт. в клетке), делением. Дрожжи широко распространены в природе. Они способны расщеплять (сбраживать) сахара в спирт и углекислый газ. Спиртовое брожение используется в виноделии, хлебопечении и в производстве кисломолочных продуктов (кефира, кумыса). Некоторые дрожжи отличаются высоким содержанием белков, жиров, витаминов группы В, минеральных веществ, поэтому применяются как пищевой и кормовой продукт.
![]() |
Классификация бактерий по форме
5. Формы клеток дрожжей:
1 - яйцевидные; 2 - эллипсовидные; 3 - цилиндрические (палочковидные);
4 - шаровидные; 5 - лимонообразные; 6 — дрожжи, размножающиеся делением и спорами.
Вирусы — частицы, не имеющие клеточного строения, обладающие своеобразным обменом веществ, способностью к размножению. Они бывают круглой, прямоугольной и нитевидной формы, размером от 8 до 150 нм. Их можно увидеть только с помощью электронных микроскопов.
⇐ Предыдущая123456789Следующая ⇒
Дата публикования: 2015-11-01; Прочитано: 1474 | Нарушение авторского права страницы
Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…
Характеристика плесневых грибов (часть 1)
Плесневые грибы, или плесени, как их принято называть, распространены повсеместно. Они относятся к различным классам грибов. Все они являются гетеротрофами и, развиваясь на пищевых продуктах (фруктах, овощах и других материалах растительного или животного происхождения), вызывают их порчу.
Классификация бактерий
На поврежденной поверхности появляется пушистый налет, первоначально белого цвета. Это - мицелий гриба. Вскоре налет окрашивается в различные цвета от светлого до темного оттенков. Эта окраска образуется массой спор и помогает распознавать плесени.
Из плесеней в виноградном сусле чаще всего встречаются Мuсоr (мукор), Penicillium (пенициллиум) и Aspergillus (аспергиллус).
Мuсоr относится к семейству мукоровых класса фикомицетов подкласса зигомицетов. У этой плесени одноклеточный сильно разветвленный мицелий, бесполое размножение осуществляется при помощи спорангиоспор, а половое — зигоспорами. У мукора спорангиеносцы одиночные, простые или ветвящиеся (рис.21).

Рис.21. Phicomycetes:
а — Мuсоr; б — Rizopus.
К этому же семейству относится и род Rizopus (ризопус), отличающийся от мукора неветвистыми спорангиеносцами, расположенными кустиками на особых гифах — столонах.
Многие мукоровые грибы способны вызывать спиртовое брожение. Некоторые мукоровые грибы (Мuсоr racemosus), развиваясь в сахаристых жидкостях, образуют при недостатке воздуха дрожжеподобные клетки, размножающиеся почкованием, вследствие чего их называют мукоровыми дрожжами.
Плесени Penicillium (рис.22) и Аsреrgillus (рис.23) относятся к плодосумчатым грибам класса Ascomycetes. У них многоклеточный мицелий, размножаются преимущественно конидиоспорами, окрашенными в различные цвета и образующимися на характерной формы конидиеносцах. Так, у Penicillium конидиеносец многоклеточный, ветвистый, имеющий вид кисточек, поэтому его называют еще кистевиком.

Рис.22. Penicillium:
1 — гифа; 2 — конидиеносец; 3 — cтepигмы; 4 — конидиоспоры.

Рис.23. Aspergillus niger (конидиеносец):
1 — стеригмы; 2 — конидии.
У Aspergillus конидиеносец одноклеточный, со вздутой верхушкой, на поверхности которой расположены радиально вытянутые клеточки — стеригмы с цепочками конидиоспор.
Плодовые тела у этих грибов образуются редко и имеют вид мелких шариков, внутри которых беспорядочно расположены сумки со спорами.
Penicillium и Aspergillus являются возбудителями порчи пищевых продуктов и органических материалов. Развиваясь на поверхности сусла, на бочках, на стенках подвалов, они являются опасными врагами винодельческого производства. Они могут проникать в бочковую клепку на глубину 2,5 см. Тара, зараженная плесенью, придает винам неприятный и почти неустранимый плесневый тон.
Некоторые виды этих грибов имеют техническое значение. Так, Penicillium notatum (пенициллиум нотатум) используется для получения антибиотика — пенициллина. Различные виды Aspergillus, Penicillium, Botrytis и некоторых других грибов используют для приготовления ферментных препаратов (нигрин, аваморин). Вид Aspergillus niger (аспергиллус нигер) применяют для производства лимонной кислоты, а Aspergillus oryzae (аспергиллус оризе) — в производстве японского национального спиртового напитка из риса — сакэ. Оба эти вида обладают способностью осахаривать крахмал и могут использоваться в производстве спирта вместо солода.
часть 1 >>> часть 2 >>> часть 3
1 2 3 4 5 6 7 8 9
ОБЩАЯ МИКРОБИОЛОГИЯ
1. Предмет, задачи, разделы микробиологии, ее связь с другими науками.
Микробиология - наука о живых организмах, невидимых невооруженным глазом (микроорганизмах): бактерии, архебактерии, микроскопические грибы и водоросли, часто этот список продляют простейшими и вирусами. В область интересов микробиологии входит их систематика, морфология, физиология, биохимия, эволюция, роль в экосистемах, а также возможности практического использования.
Предметом изучения микробиологии являются бактерии, плесневые грибы, дрожжи, актиномицеты, риккетсии, микоплазмы, вирусы. Но поскольку вирусы абсолютно не могут существовать без живого организма, изучением их занимается самостоятельная наука, называемая «вирусологией».
Цель медицинской микробиологии - изучение структуры и свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.
Разделы микробиологии: бактериология, микология, вирусология и т. д.
- *Общая микробиология – изучает закономерности жизнедеятельности всех групп микроорганизмов, выясняет роль и значение в природном круговороте.
- *Частная микробиология – изучает систематику бактерий, возбудителей отдельных заболеваний и методы их лабораторной диагностики.
В составе обширной науки микробиологии выделяют разделы:
- *Сельскохозяйственная микробиология изучает роль и формирование структуры почвы и ее плодородия, роль бактерий в питании растений.
Разрабатывает методы и способы использования бактерий для удобрения почв и консервирования кормов.
- *Ветеринарная микробиология – изучает микробов, вызывающих заболевания у домашних животных, разрабатывает методы диагностики, профилактики и лечения данных болезней.
- *Техническая (промышленная) микробиология – изучает микроорганизмы, которые можно использовать в производственных процессах для получения биологически активных веществ, биомассы и пр. Многие исследования происходят на стыке дисциплин (например, молекулярная биология, генная инженерия, биотехнология).
- *Санитарная микробиология изучает бактерий, обитающих в объектах окружающей среды, как автохтонных, так и аллохтонных, способных вызвать загрязнение окружающей среды и играть определенную роль в эпидемиологии инфекций.
- *Экологическая микробиология изучает роль микроорганизмов в природных экосистемах и пищевых цепях.
- *Популяционная микробиология выясняет природу межклеточных контактов и взаимосвязь клеток в популяции.
- *Космическая микробиология характеризует физиологию земных микроорганизмов в условиях космоса, изучает влияние космоса на симбиотические бактерии человека, занимается вопросами предупреждения занесения космических микроорганизмов на Землю.
- *Медицинская микробиология – изучает микробов, вызывающих заболевания у человека. Изучает патогенез и клиническую картину заболеваний, факторы патогенности. Разрабатывает методы профилактики, диагностики и лечения инфекционных болезней человека.
За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.
Общая изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.
Техническая занимается разработкой биотехнологии синтеза микроорганизмами биологически активных веществ: белков, нуклеиновых кислот, антибиотиков, спиртов, ферментов, а также редких неорганических соединений.
Сельскохозяйственная исследует роль микроорганизмов в круговороте веществ, использует их для синтеза удобрений, борьбы с вредителями.
Ветеринарная изучает возбудителей заболеваний животных, методы диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение возбудителя инфекции в организме больного животного.
Медицинская микробиология изучает болезнетворные(патогенные) и условно-патогенные для человека микроорганизмы, а также разрабатывает методы микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.
Санитарная микробиология изучает санитарно-микробиологическое состояние объектов окружающей среды, пищевых продуктов и напитков, и разрабатывает санитарно-микробиологические нормативы и методы индикации патогенных микроорганизмов в различных объектах и продуктах
Основные этапы развития микробиологии.
Выделяют следующие 5 периоды: эвристический, морфологический, физиологический, иммунологический, молекулярно-генетический
- Эвристический: IV-III тыс. до н.э. – эмпирические знания. Гиппократ : предполагал о природе заразности заболеваний. Факасторо : идея о живом контагии, вызывающем болезни; рекомендовал изолировать больных и надевать маски
- Морфологический: Открытие в 1676г. ^ Антонием ван Левенгуком ; изготовление линз, увеличивающих в 200-300 раз. Описал и зарисовал многие микроорганизмы, обнаруженные в различных настоях, в колодезной воде, на мясе и др. объектах. Назвал микробы «анималькулюсами».
- Физиологический: Луи Пастер
(1822-1895) французский ученый-химик; основоположник микробиологии, иммунологии, биотехнологии но и характером жизнедеятельности; они вызывают разнообразные химические превращения в субстратах, на которых развиваются; он изучал различные виды брожения (спиртовое, маслянокислое), доказал существование анаэробных организмов
Значительным вкладом в микробиологию явились исследования немецкого ученого Роберта Коха (1843-1910).Им были введены в практику плотные питательные среды для выращивания микробов; это позволило разработать методы выделения (изолирования) микробов в «чистые культуры», т. е. культуры каждого вида в отдельности, развывшееся в одной клетке. Ввел окраску анилиновыми красителями. Микрофотографии. Изучал возбудителей сибирской язвы, туберкулеза, холеры и др. заразных болезней; Сформулировал триаду Коха-Генле: найди, докажи, уничтожь. В 1905 – нобелевская премия.
- Иммунологический: Многочисленные открытия в области микробиологии во второй половине XIX в.
Приведите классификацию бактерий по их форме
способствовали началу бурного развития иммунологии.
^ И. И. Мечников (1845-1916) разработал фагоцитарную теорию иммунитета — невосприимчивости организма к заразным болезням. Ему принадлежит идея использования антагонистических отношений между микробами, что легло в основу современного учения об антибиотиках; с ним связано развитие микробиологии в России; он организовал первую в России бактериологическую лабораторию (в Одессе). В 1903 – нобелевская премия. Пауль Эрлих : немецкий химик. Разработал теорию гуморальной защиты организма антителами. Получил Нобелевскую премию в 1908г. - Молекулярно-генетический: Стенли Прузинер : американский биолог. Открыл прионы-эндогенные клеточные образование, связанные с ошибками биосинтеза белка, которые обусловлены мутацией генов, ошибвами трансляции, процессами протеолиза Н. Ф. Гамалея (1859 — 1949) изучал вопросы медицинской микробиологии; открыл станцию по прививкам против бешенства; описал явление бактериофагов
3. Классификация микроорганизмов. Различия между эукариотами, прокариотами и вирусами.
Микробы, или микроорганизмы (бактерии, грибы, простейшие, вирусы), систематизированы по их сходству, различиям и взаимоотношениям между собой. Этим занимается специальная наука - систематика микроорганизмов. Систематика включает три части: классификацию, таксономию и идентификацию. В основу таксономии микроорганизмов положены их морфологические, физиологические, биохимические и молекулярно-биологические свойства. Различают следующие таксономические категории: царство, подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др. В рамках той или иной таксономической категории выделяют таксоны - группы организмов, объединенные по определенным однородным свойствам.
Микроорганизмы представлены доклеточными формами (вирусы - царство Vira) и клеточными формами (бактерии, архебактерии, грибы и простейшие). Различают 3 домена (или «империи»): «Bacteria», «Archaea» и «Eukarya»:
домен «Bacteria» - прокариоты, представленные настоящими бактериями (эубактериями);
домен «Archaea» - прокариоты, представленные архебактериями;
домен «Eukarya» - эукариоты, клетки которых имеют ядро с ядерной оболочкой и ядрышком, а цитоплазма состоит из высокоорганизованных органелл - митохондрий, аппарата Гольджи и др. Домен «Eukarya» включает: царство Fungi (грибы); царство животных Animalia (включает прстейшие – подцарство Protozoa); царство растений Plante. Домены включают царства, типы, классы, порядки, семейства, роды, виды.
Вид . Одной из основных таксономических категорий является вид (species ). Вид - это совокупность особей, объединенных по близким свойствам, но отличающихся от других представителей рода.
Чистая культура . Совокупность однородных микроорганизмов, выделенных на питательной среде, характеризующихся сходными морфологическими, тинкториальными (отношение к красителям), культуральными, биохимическими и антигенными свойствами, называется чистой культурой.
Штамм . Чистая культура микроорганизмов, выделенных из определенного источника и отличающихся от других представителей вида, называется штаммом. Штамм - более узкое понятие, чем вид или подвид.
Клон . Близким к понятию штамма является понятие клона. Клон представляет собой совокупность потомков, выращенных из единственной микробной клетки.
Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс var (разновидность) вместо ранее применявшегося type .
4. Классификация бактерий. Принципы современной систематики и номенклатуры, основные таксономические единицы. Понятие о виде, варианте, культуре, популяции, штамме.
Наибольшую известность получила фенотипическая классификация бактерий, основанная на строении их клеточной стенки.
Крупнейшими таксономическими группами в ней стали 4 отдела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные ), Tenericutes (микоплазмы ; отдел с единственным классом Mollicutes ) и Mendosicutes (археи ) Mollicutes -Микоплазмы - прокариотные одноклеточные , грамотрицательные микроорганизмы , не имеющие клеточной стенки , которые были открыты при изученииплевропневмонии у коров .
Микоплазмы, по всей видимости, являются наиболее простыми самостоятельно воспроизводящимися живыми организмами, объём их генетической информации в 4 раза меньше, чем у Escherichia coli .
Многочисленные микроорганизмы (бактерии, грибы, простейшие, вирусы) строго систематизированы в определенном порядке по их сходству, различиям и взаимоотношениям между собой. Этим занимается специальная наука, называемая систематикой микроорганизмов.
Раздел систематики, изучающий принципы классификации, называется таксономией (от греч.
taxis . расположение, порядок). Таксон. группа организмов, объединенная по определенным однородным свойствам в рамках той или иной таксономической категории. Самой крупной таксономической категорией является царство, более мелкими. подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др. Образование названий микроорганизмов регламентируется Международным кодексом номенклатуры (зоологической, ботанической, номенклатуры бактерий, вирусов). В основу таксономии микроорганизмов положены их морфологические, изиологические, биохимические, молекулярно-биологические свойства.
Согласно современной систематике, патогенные (болезнетворные) бактерии относятся к надцарству прокариотов (Procaryotae), царству эукариот (Eucaryotae), грибы - к царству микота (Mycota), простейшие - к царству Protozoa, вирусы - к царству Vira.
Вид - совокупность микроорганизмов, имеющих общий корень происхождения и максимально близкие фенотипические признаки и свойства. (Вид - эволюционно сложившаяся совокупность особей, имеющих единый тип организации, который в стандартных условиях проявляется сходными фенотипическими признаками: морфологическими, физиологическими, биохимическими и др.)
Популяция - совокупность особей одного вида, обитающих в пределах биотопа (территориально ограниченный участок биосферы с относительно однородными условиями жизни).
Штамм - чистые культуры микробов одного вида, полученные из разных источников или из одного источника в разное время.
Чистая культура - популяция состоящая из особей одного вида. (из одной микробной клетки на искусственной питательной среде).
5. Методы микроскопии. Микроскопический метод диагностики инфекционных заболеваний.
Люминесцентная (или флюоресцентная) микроскопия. Основана на явлении фотолюминесценции.
Люминесценция - свечение веществ, возникающее после воздействия на них каких-либо источников энергии: световых, электронных лучей, ионизирующего излучения. Фотолюминесценция - люминесценция объекта под влиянием света. Если освещать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта.
Темнопольная микроскопия. Микроскопия в темном поле зрения основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоидконденсора, которые заменяют обычный конденсор в биологическом микроскопе.
Фазово-контрастная микроскопия. Фазово-контрастное приспособление дает возможность увидеть в микроскоп прозрачные объекты. Они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным - светлое изображение объекта на темном фоне.
Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное устройство, а также специальные осветители.
Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов.
В повседневной практике бактериологической лаборатории микроскопическое исследование, как правило, используют для ускоренной ориентировочной диагностики.
Основные задачи микроскопии: выявление возбудителя в клиническом материале, ориентировочная идентификация на основе определения характерных морфологических и тинкториальных признаков микроорганизмов, а также изучение окрашенных мазков из колоний чистых культур. При некоторых инфекционных болезнях, для возбудителей которых характерна специфичность морфологии (протозойные болезни, гельминтозы, грибковые заболевания, спирохетозы), микроскопическое исследование - основной или один из основных методов диагностики.
Материалом для микроскопического исследования могут служить кровь, костный мозг, СМЖ, пунктаты лимфатических узлов, фекалии, дуоденальное содержимое и жёлчь, моча, мокрота, отделяемое мочеполовых путей, биоптаты тканей, мазки со слизистых оболочек (ротовой полости, нёбных миндалин, носа, влагалища и др.).
6. Методы окраски микробов и их отдельных структур.
Методы окраски. Окраску мазка производят простыми или сложными методами. Простые заключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю - Нильсену и др.) включают последовательное использование нескольких красителей и имеют дифференциально-диагностическое значение. Отношение микроорганизмов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.
При простых методах мазок окрашивают каким-либо одним красителем, используя красители анилинового ряда (основные или кислые). Если красящий ион (хромофор) - катион, то краситель обладает основными свойствами, если хромофор — анион, то краситель имеет кислые свойства. Кислые красители - эритрозин, кислый фуксин, эозин. Основные красители - генциановый фиолетовый, кристаллический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки. Из сухих красителей, продающихся в виде порошков, готовят насыщенные спиртовые растворы, а из них - водно-спиртовые, которые и служат для окрашивания микробных клеток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время. Окраску основным фуксином ведут в течение 2 мин, метиленовым синим - 5-7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Если мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены.
Сложные методы окраски применяют для изучения структуры клетки и дифференциации микроорганизмов. Окрашенные мазки микроскопируют в иммерсионной системе. Последовательно нанести на препарат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.
1 2 3 4 5 6 7 8 9
Микробиология – наука, изучающая строение, свойства и жизнедеятельность микроорганизмов. Пища является благоприятной питательной средой для развития микробов, которые своим действием могут изменить свойства и качество пищи, делая её опасной для здоровья человека.
Микробы – одноклеточные организмы – широко распространены в почве, воде, воздухе.
Одни микробы играют положительную, а другие отрицательную роль.
Морфология микробов (бактерии, плесневелые грибы, дрожжи, вирусы)
|
Название микробов |
Форма |
Способ размножения |
|
Бактерии – одноклеточные микроорганизмы размером 0,4 – 10 мкм. |
Делят на: 1) кокки – шаровидной формы (микрококки, диплококки, тетракокки) 2) палочки (одиночные, двойные, цепочки) 3. вибрионы изогнутые и 4. спириллы спирально извитые 5. спирохеты формы |
Путем простого деления в течении 20-30 минут. |
|
Плесневелые грибы – одноклеточные или многоклеточные растительные организмы, нуждающиеся в пищевых продуктах и в доступе воздуха. |
Имеют форму вытянутых переплетающихся нитей толщиной 1-15 мкм. |
С помощью гиф и спорами. |
|
Дрожжи – одноклеточные неподвижные микроорганизмы. |
Бывают разной формы: круглые, овальные, палочковидные |
В благоприятных условиях в течении нескольких часов следующими способами: почкованием, спорами и делением. |
|
Вирусы – частицы, не имеющие клеточного строения, обладающие своеобразным обменом веществ, способностью к размножению. |
Бывают круглой, прямоугольной и нитевидной формы размером от 8 до 150 нм. |
Физиология микробов
Микробы, как и все живые существа, состоят из белков (6-14 %), жиров (1-4 %), углеводов, минеральных веществ, воды (70-85 %), ферментов.
Вода составляет основную массу клетки микроорганизма. Количе-ство ее колеблется от 70 до 85 % - в вегетивных клетках и около 50 % в спорах. В воде растворены все важные органические и минеральные вещества микробной клетки и протекают основные биохимичес-кие процессы (гидролиз белков, углеводов и др.).
Белки - основа жизненных структур микроорганизмов. Они вхо-дят в состав цитоплазмы, ядра, оболочек и другие структуры клетки. 1>елки микробов состоят из аминокислот.
Углеводы - входят в состав оболочки, слизистых капсул, прото-плазмы и в виде зерен гликогена - запасного питательного вещества. Углеводы поступают в клетку микробов из окружающей среды и используются клеткой как источник энергии.
Классификация и физиология микроорганизмов
В клетках имеются как простые углеводы, так и сложные (крахмал, гликоген, клетчатка).
Жиры - в небольшом количестве входят в состав цитоплазмы, ядра в виде сложных соединений с белками. Жиры служат источни-ком энергии микроорганизмов.
Минеральные вещества играют важную роль в построении слож-ных белков, витаминов, ферментов микробной клетки. Растворимые минеральные вещества поддерживают нормальный уровень внутри-клеточного осмотического давления (тургор).
Минеральные вещества микробов представлены в виде: фосфора, натрия, магния, железа, серы и др.
Ферменты - вещества ускоряющие (катализаторы) биохимичес-кие процессы и находятся внутри клетки микробов. Микробы содер-жат различные ферменты, одни из которых влияют на биохимичес-кие процессы внутри клетки, другие выделяются наружу, перераба-тывая вещества окружающей среды, вызывая брожение, гниение и другие процессы в пищевых продуктах.
Питание микробов. Микробы питаются белками, жирами углеводами, минеральными веществами, которые проникают в клетку в растворенном виде через оболочку путем осмоса(процесс диффу-зии через полупроницаемую оболочку). Белки и сложные углеводы усваиваются микробами только после расщепления их на простые составные части ферментами, выделенными микроорганизмами.
Для осуществления нормального питания микробов необходимо определенное соотношение концентрации веществ как внутри клет-ки микроорганизма, так и в окружающей среде. Наиболее благопри-ятная концентрация - содержание 0,5 % хлористого натрия в окружающей среде. В среде, где концентрация растворимых веществ на много выше (2-10 %), чем в клетке, вода из клетки переходит в окружающую среду, происходит обезвоживание и сморщивание цитоплазмы, что приводит к гибели микроба. Это свойство микроорганизмов используют при консервировании продуктов сахаром (варенье) или солью (посол мяса, рыбы).
Дыхание микробов. Дыхание микробам необходимо для по-лучения энергии, обеспечивающей все жизненные процессы. По спо-собу дыхания микробы делят на аэробы, нуждающиеся в кислороде воздуха (плесневые грибы, уксуснокислые бактерии); анаэробы, жи-вущие и развивающиеся при отсутствии кислорода (ботулинус, маслянокислые бактерии), условные (факультативные) анаэробы, развивающиеся как в присутствии кислорода, так и без него (молочно-кислые бактерии, дрожжи).
Биология дрожжей
5. Морфология дрожжей
Макроморфологические признаки очень изменчивы и сильно зависят от состава среды и условий культивирования, поэтому они имеют весьма ограниченное значение в систематике дрожжей. . Дрожжевые культуры, растущие на плотных средах…
Вегетативное размножение кустарников
1.2 Способы размножения кустарников
Кустарники размножаются черенками, семенами, отводками. Семенное размножение большинства хвойных зачастую затруднено ввиду низкой доброкачественности и длительной всхожести семян, а также медленного роста сеянцев…
Вегетативное размножение хвойных растений
1.2 Способы размножения хвойных растений
Семенное размножение большинства хвойных зачастую затруднено ввиду низкой доброкачественности и длительной всхожести семян, а также медленного роста сеянцев…
Генетически модифицированные организмы. Принципы получения, применение
1.2.1 Способы получения ГМ микроорганизмов
Способность организмов синтезировать те или иные биомолекулы, в первую очередь белки, закодирована в их геноме. Поэтому достаточно «добавить» нужный ген, взятый из другого организма, в бактерию…
Микробиология
2. Энергетический обмен микробов. Способы получения энергии — брожение, дыхание. Типы дыхания бактерий
Жизненные функции микроорганизмов: питание, дыхание, рост и размножение — изучает физиология. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм). Сущность обмена веществ составляют два противоположных…
Микробиология питьевой воды
1.1 Закономерности количественного и качественного содержания микроорганизмов в пресных водоемах от различных факторов
Микрофлора различных водоемов содержит достаточное количество питательных веществ, что является главным фактором, способствующим развитию микроорганизмов. Чем богаче он, органическими веществами…
Морфология внутреннего строения рыб
2.8 Половая система и способы размножения
Способы размножения рыб различны. Некоторые живородящие — из тела матери выходит активная молодь. Остальные — яйцекладущие, т.е. мечут икру, оплодотворяемую во внешней среде. Репродуктивное поведение некоторых рыб весьма своеобразно…
Морфология и классификация прокариотов и эукариотов. Генетика микроорганизмов
4. Морфология и классификация эукариотов (микроскопических грибов и дрожжей)
Эукариоты (мицелиальные и дрожжевые грибы). Грибы. Общая характеристика. Грибы (Мусоtа) — обширная и разнообразная группа растительных организмов. Они не содержат хлорофилла…
1.
Перенос генетического материала у актиномицетов
Перенос генетического материала и генетическое картирование у актиномицетов
2. Генетическое картирование актиномицетов
Генетика актиномицетов исследована достаточно хорошо. Для наиболее изученных видов еще с конца 50-х гг. составлялись на основании конъюгационных скрещиваний подробные генетические карты с множеством нанесенных на них маркеров…
Плесневые грибы
1. Способы размножения плесневых грибов.
2.2. Классификация и морфология бактерий
Способы образования и размножения спор. Значение бесполого спорообразования для идентификации рода грибов
Размножение происходит путем деления, идущего в поперечном направлении. При делении бактерия распадается на две равные или неравные по величине части. Образовавшиеся две клетки рассматриваются как материнская и дочерняя…
Размножение — одно из фундаментальных свойств живого. Способы и формы размножения организмов
Раздел 2. Основные способы и формы размножения
Процесс размножения исключительно сложен и связан не только с передачей генетической информации от родителей к потомству, но и с анатомическими и физиологическими свойствами организмов, с их поведением, гормональным контролем…
Роль микроорганизмов в круговороте химических элементов в природе
6. Роль микроорганизмов в круговороте фосфора. Различные типы жизни бактерий, основанные на использовании соединений фосфора
Круговорот фосфора несколько отличается от круговорота остальных элементов. Освобождение фосфора из органических соединений происходит в результате процессов гниения. Однако, до сих пор не обнаружены микроорганизмы…
Способы размножения у различных микроорганизмов, сущность и химизм их дыхания
2. Характеристика аэробных и анаэробных микроорганизмов. Сущность и химизм дыхания у микроорганизмов
Потребность в энергии обеспечивается процессами энергетического обмена, сущность которых заключается в окислении органических веществ, сопровождаемом выделением энергии…
Углеводородокисляющие микроорганизмы – перспективные объекты экологической биотехнологии
1.3 Трансформации, осуществляемые спорами грибов и актиномицетов
Трансформации, осуществляемые спорами, заслуживают специального внимания. Они обладают рядом удобств как технологические процессы. Неожиданно высокая энзиматическая активность, которую демонстрируют споры…
Микробиология изучает строение, жизнедеятельность, условия жизни и развития мельчайших организмов, называемых микробами, или микроорганизмами.
«Невидимые, они постоянно сопровождают человека, вторгаясь в его жизнь то как друзья, то как враги», — сказал академик В. Л. Омельянский. Действительно, микробы есть везде: в воздухе, в воде и в почве, в организме человека и животных. Они могут быть полезны, и их используют в производстве многих пищевых продуктов. Они могут быть вредны, вызывать заболевания людей, порчу продуктов и др.
Микробы были открыты голландцем А. Левенгуком (1632-1723) в конце XVII в., когда он изготовил первые линзы, дававшие увеличение в 200 и более раз. Увиденный микромир поразил его, Левенгук описал и зарисовал микроорганизмы, обнаруженные им на различных объектах. Он положил начало описательному характеру новой науки. Открытия Луи Пастера (1822-1895) доказали, что микроорганизмы отличаются не только формой и строением, но и особенностями жизнедеятельности. Пастер установил, что дрожжи вызывают спиртовое брожение, а некоторые микробы способны вызывать заразные болезни людей и животных. Пастер вошел в историю как изобретатель метода вакцинации против бешенства и сибирской язвы. Всемирно известен вклад в микробиологию Р. Коха (1843-1910) — открыл возбудителей туберкулеза и холеры, И. И. Мечникова (1845-1916) — разработал фагоцитарную теорию иммунитета, основоположника вирусологии Д. И. Ивановского (1864-1920), Н. Ф. Гамалея (1859-1940) и многих других ученых.
Классификация и морфология микроорганизмов
Микробы — это мельчайшие, преимущественно одноклеточные живые организмы, видимые только в микроскоп. Размер микроорганизмов измеряется в микрометрах — мкм (1/1000 мм) и нанометрах — нм (1/1000 мкм).
Микробы характеризуются огромным разнообразием видов, отличающихся строением, свойствами, способностью существовать в различных условиях среды. Они могут быть одноклеточными, многоклеточными и неклеточными.
Микробы подразделяют на бактерии, вирусы и фаги, грибы, дрожжи. Отдельно выделяют разновидности бактерий — риккетсии, микоплазмы, особую группу составляют простейшие (протозои).
Бактерии
Бактерии — преимущественно одноклеточные микроорганизмы размером от десятых долей микрометра, например микоплазмы, до нескольких микрометров, а у спирохет — до 500 мкм.
Различают три основные формы бактерий — шаровидные (кокки), палочковидные (бациллы и др.), извитые (вибрионы, спирохеты, спириллы) (рис. 1).
Шаровидные бактерии (кокки) имеют обычно форму шара, но могут быть немного овальной или бобовидной формы. Кокки могут располагаться поодиночке (микрококки); попарно (диплококки); в виде цепочек (стрептококки) или виноградных гроздьев (стафилококки), пакетом (сарцины). Стрептококки могут вызывать ангину и рожистое воспаление, стафилококки — различные воспалительные и гнойные процессы.

Рис. 1. Формы бактерий: 1 — микрококки; 2 — стрептококки; 3 — сардины; 4 — палочки без спор; 5 — палочки со спорами (бациллы); 6 — вибрионы; 7- спирохеты; 8 — спириллы (с жгутиками); стафилококки
Палочковидные бактерии самые распространенные. Палочки могут быть одиночными, соединяться попарно (диплобактерии) или в цепочки (стрептобактерии). К палочковидным относятся кишечная палочка, возбудители сальмонеллеза, дизентерии, брюшного тифа, туберкулеза и др. Некоторые палочковидные бактерии обладают способностью при неблагоприятных условиях образовывать споры. Спорообразующие палочки называют бациллами. Бациллы, напоминающие по форме веретено, называют клостридиями.
Спорообразование представляет собой сложный процесс. Споры существенно отличаются от обычной бактериальной клетки. Они имеют плотную оболочку и очень малое количество воды, им не требуются питательные вещества, а размножение полностью прекращается. Споры способны длительно выдерживать высушивание, высокие и низкие температуры и могут находиться в жизнеспособном состоянии десятки и сотни лет (споры сибирской язвы, ботулизма, столбняка и др.). Попав в благоприятную среду, споры прорастают, т. е. превращаются в обычную вегетативную размножающуюся форму.
Извитые бактерии могут быть в виде запятой — вибрионы, с несколькими завитками — спириллы, в виде тонкой извитой палочки — спирохеты. К вибрионам относится возбудитель холеры, а возбудитель сифилиса — спирохета.
Бактериальная клетка имеет клеточную стенку (оболочку), часто покрытую слизью. Нередко слизь образует капсулу. Содержимое клетки (цитоплазму) отделяет от оболочки клеточная мембрана. Цитоплазма представляет собой прозрачную белковую массу, находящуюся в коллоидном состоянии. В цитоплазме находятся рибосомы, ядерный аппарат с молекулами ДНК, различные включения запасных питательных веществ (гликогена, жира и др.).
Микоплазмы — бактерии, лишенные клеточной стенки, нуждающиеся для своего развития в ростовых факторах, содержащихся в дрожжах.
Некоторые бактерии могут двигаться. Движение осуществляется с помощью жгутиков — тонких нитей разной длины, совершающих вращательные движения. Жгутики могут быть в виде одиночной длинной нити или в виде пучка, могут располагаться по всей поверхности бактерии. Жгутики есть у многих палочковидных бактерий и почти у всех изогнутых бактерий. Шаровидные бактерии, как правило, не имеют жгутиков, они неподвижны.
Размножаются бактерии делением на две части. Скорость деления может быть очень высокой (каждые 15-20 мин), при этом количество бактерий быстро возрастает. Такое быстрое деление наблюдается на пищевых продуктах и других субстратах, богатых питательными веществами.
Вирусы
Вирусы — особая группа микроорганизмов, не имеющих клеточного строения. Размеры вирусов измеряются нанометрами (8-150 нм), поэтому их можно увидеть только с помощью электронного микроскопа. Некоторые вирусы состоят только из белка и одной из нуклеиновых кислот (ДНК или РНК).
Вирусы вызывают такие распространенные болезни человека, как грипп, вирусный гепатит, корь, а также болезни животных — ящур, чуму животных и многие другие.
Вирусы бактерий называют бактериофагами , вирусы грибов — микофагами и т. п. Бактериофаги встречаются повсюду, где есть микроорганизмы. Фаги вызывают гибель микробной клетки и могут использоваться для лечения и профилактики некоторых инфекционных заболеваний.
Грибы являются особыми растительными организмами, которые не имеют хлорофилла и не синтезируют органические вещества, а нуждаются в готовых органических веществах. Поэтому грибы развиваются на различных субстратах, содержащих питательные вещества. Некоторые грибы способны вызывать болезни растений (рак и фитофтора картофеля и др.), насекомых, животных и человека.
Клетки грибов отличаются от бактериальных наличием ядер и вакуолей и похожи на растительные клетки. Чаще всего они имеют форму длинных и ветвящихся или переплетающихся нитей — гифов. Из гифов образуется мицелий, или грибница. Мицелий может состоять из клеток с одним или несколькими ядрами или быть неклеточным, представляя собой одну гигантскую многоядерную клетку. На мицелии развиваются плодовые тела. Тело некоторых грибов может состоять из одиночных клеток, без образования мицелия (дрожжи и др.).
Грибы могут размножаться разными путями, в том числе вегетативным путем в результате деления гиф. Большинство грибов размножаются бесполым и половым путями при помощи образования специальных клеток размножения — спор. Споры, как правило, способны длительно сохраняться во внешней среде. Созревшие споры могут переноситься на значительные расстояния. Попадая в питательную среду, споры быстро развиваются в гифы.
Обширную группу грибов представляют плесневые грибы (рис. 2). Широко распространенные в природе, они могут расти на пищевых продуктах, образуя хорошо видные налеты разной окраски. Причиной порчи продуктов часто являются мукоровые грибы, образующие пушистую белую или серую массу. Мукоровый гриб ризопус вызывает «мягкую гниль» овощей и ягод, а гриб ботритис покрывает налетом и размягчает яблоки, груши и ягоды. Возбудителями плесневения продуктов могут быть грибы из рода пениииллиум.
Отдельные виды грибов способны не только приводить к порче продуктов, но и вырабатывать токсические для человека вещества — микотоксины. К ним относятся некоторые виды грибов рода аспергиллус, рода фузариум и др.
Полезные свойства отдельных видов грибов используют в пищевой и фармацевтической промышленности и других производствах. Например, грибы рода пениииллиум применяются для получения антибиотика пенициллина и в производстве сыров (рокфора и камамбера), грибы рода аспергиллус — в производстве лимонной кислоты и многих ферментных препаратов.
Актиномицеты — микроорганизмы, имеющие признаки и бактерий, и грибов. По строению и биохимическим свойствам актиномицеты аналогичны бактериям, а по характеру размножения, способности образовывать гифы и мицелий похожи на грибы.

Рис. 2. Виды плесневых грибов: 1 — пениииллиум; 2- аспергиллус; 3 — мукор.
Дрожжи
Дрожжи — одноклеточные неподвижные микроорганизмы размером не более 10-15 мкм. Форма клетки дрожжей бывает чаще круглой или овальной, реже палочковидной, серповидной или похожей на лимон. Клетки дрожжей своим строением похожи на грибы, они также имеют ядро и вакуоли. Размножение дрожжей происходит почкованием, делением или спорами.
Дрожжи широко распространены в природе, их можно обнаружить в почве и на растениях, на пищевых продуктах и различных отходах производства, содержащих сахара. Развитие дрожжей в пищевых продуктах может приводить к их порче, вызывая брожение или закисание. Некоторые виды дрожжей обладают способностью превращать сахар в этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением и широко используется в пищевой промышленности и виноделии.
Некоторые виды дрожжей кандида вызывают заболевание человека — кандидоз.
Бактерии - это одноклеточные, бесхлорофильные организмы, вегетативно размножающиеся делением, реже перешнурованием, иногда образующие внутриклеточные споры.
Величина бактерий измеряется в микронах и за редкими исключениями лежит в пределах от 0,06-0,3 до 3-5 μ. В капле воды могут свободно поместиться несколько сот миллионов бактерий.
Форма бактериальной клетки довольно однообразна. Известны три основные формы бактерий: круглая, палочковидная и извитая с многочисленными и незаметными переходами между ними. Антон Де-Бари образно сравнивал их с бильярдным шаром, карандашом и пробочником.
Кокками называются бактерии, имеющие круглую форму. Они различаются размерами и взаимным расположением. Кокки, соединенные попарно, носят название диплококков, соединенные же в виде ожерелья называются стрептококками. При делении, чередующемся в двух взаимно-перпендикулярных направлениях, образуются тетракокки. Если деление правильно и повторяется в трех взаимно-перпендикулярных направлениях, то образуются соединения клеток в виде пакетов - это так называемые сардины. Делясь в разных направлениях без особой правильности, кокки образуют беспорядочные скопления, напоминающие кисть винограда. Они называются стафилококками.
Бактерии палочковидной формы несколько более разнообразны по своему внешнему виду. Они могут быть с усеченными или закругленными концами, цилиндрическими, бочковидными или лимоновидными и как бы с перетяжкой посередине, часто эллипсоидальными, отличаясь лишь своими размерами в ширину и длину. Палочки могут быть прямыми, изогнутыми, одиночными, сцепленными попарно или цепочкой, короткими или сильно вытянутыми. Палочковидные бактерии, у которых длина в два раза и более превосходит ширину, называются бациллами; если же разница между длиной и шириной невелика, то их называют бактериями.
Бактерии извитой формы различаются не только по длине и толщине, но и по количеству и характеру завитков. Слегка изогнутые бактерии (завиток не превышает 1/4 оборота спирали) называются вибрионами, бактерии, имеющие один или несколько больших правильных завитков, - спириллами. Длинные и тонкие бактерии извитой формы с многочисленными мелкими завитками, иногда с крупными искривлениями всей нити, называются спирохетами.
Строение бактерий
По простоте своей организации и ничтожным размерам бактерии принадлежат к наиболее элементарным существам и стоят на самых низких ступенях жизни. Несмотря на огромные успехи науки и техники, еще не все вопросы строения бактерий разрешены.
Тело бактерий состоит из оболочки и протоплазм этического содержимого, пропитанного клеточным соком. Оболочка бактерий тонка, бесцветна, структура ее не различима в микроскоп. Для того чтобы видеть ее, прибегают к искусственным методам обработки. Оболочка лежит в основе внешней формы клетки и, по-видимому, является известной защитой в неблагоприятных условиях. Свободно облекая содержимое клетки, она благодари своей упругости допускает свободное движение бактерий, нередко сопровождающееся оживленными движениями всего тела.
Наружные слои оболочки, поглощая воду, нередко разбухают и образуют студенистую клейкую массу, достигающую заметных размеров. По мере ослизнения наружных слоев оболочка беспрерывно возобновляется за счет протоплазмы. Остудневшая клейкая оболочка носит название капсулы. Интенсивность образования слизи и капсул зависит от особенностей питания и иногда может быть весьма значительной. Слизистая капсула образуется не только около каждой клетки в отдельности, но и у многих клеток, связанных в одну колонию и заключенных как бы в общую капсулу. Такие слизистые колонии бактерий называются зооглеями . Образование капсул свойственно не всем видам бактерий.
Движение бактерий
Способность к самопроизвольному движению присуща лишь некоторым группам бактерий. Передвигаются бактерии с помощью жгутиков или ресничек. Жгутики имеют вид более или менее длинных нитей. Они очень нежны, тонки, легко обрываются, без специального окрашивания в микроскоп не видимы. Диаметр их не превышает 1/20 части поперечника тела бактерии.
Подвижные формы бактерий делятся на следующие группы:
- монотрихи - есть только один полярный жгутик,
- лофотрихи - имеется пучок жгутиков на одном из концов клетки,
- перитрихи-жгутики расположены по всей поверхности тела.
Характер расположения жгутиков на теле бактерии определяет и характер ее движения - прямолинейное или беспорядочное. Подвижность бактерий зависит от ряда условий: температуры, состава питательной среды, продуктов их жизнедеятельности и т. п. Подвижные формы бактерий не во всех стадиях своего развития и не во всех условиях роста снабжены жгутиками.
Спорообразование
В теле многих бактерий в известные периоды их развития появляются круглые или эллипсоидальные образования - опоры. Они обычно завершают цикл развития бактерий. Величина спор по сравнению с величиной произведших их клеток может колебаться в широких пределах.
Опоры образуются не у всех видов бактерий. Они окружены хорошо обособленной оболочкой, почти непроницаемы для воды и являются наиболее устойчивыми образованиями среди всего живого мира. Так, они нередко выдерживают кипячение в течение нескольких часов и продолжительное действие сухого пара при температуре от 120 до 140°. Споры многих бацилл сохраняют свою жизнеспособность после продолжительного пребывания при температуре -190° и даже при температуре жидкого водорода (-253°). Устойчивы они также и к действию химических веществ - ядов. Все это чрезвычайно затрудняет борьбу с болезнетворными споровыми видами бактерий.
Зрелая спора в течение десятков лет может сохранять свою жизнеспособность. Обычно прорастание спор происходит после некоторого периода покоя и связано с воздействием внешних условий. Весь процесс спорообразования протекает в течение суток и менее. После созревания споры, произведшая ее клетка постепенно отмирает и зрелая спора выходит наружу. При прорастании она набухает, становится богаче водой и из нее выходит проросток, одетый в тонкую оболочку.
Размножение бактерий
Достигнув состояния зрелости и предела роста, бактерии начинают размножаться простым делением. При делении в средней части тела бактерии появляется перегородка, которая затем расщепляется и обособляет две новые клетки. Последовательное расположение перегородок при делении у разных бактерий различно. У палочковидных форм оно располагается перпендикулярно к длинной оси, у шарообразных форм перегородки могут располагаться в одной, двух или трех взаимно-перпендикулярных плоскостях, с чем и связано образование таких форм, как стрептококки, тетракокки и сарцины.
Быстрота размножения бактерий зависит от ряда условий и может быть весьма различной. Чем благоприятнее внешние условия существования бактерий, тем быстрее происходит их деление. В нормальных условиях число бактерий удваивается приблизительно через каждые полчаса. Вели бы оно всегда происходило беспрепятственно, то количество бактерий от одной клетки достигло бы колоссальных размеров. По подсчету микробиолога Кона, потомство одной бациллы через пять дней могло бы заполнить все моря и океаны. Однако этого никогда не было и никогда не будет. Жизненный цикл бактерий ограничен определенными внешними условиями, за пределами которых размножение замедляется или вовсе приостанавливается. Недостаток питания, вредные продукты обмена, конкуренция различных видов и т. п. губительно действуют на бактерии. При неблагоприятных условиях они массами погибают.
Классификация бактерий
Положение бактерий в системе живых существ пока еще недостаточно определено. Принято считать, что бактерии представляют часть растительного мира, а грибы и водоросли являются ближайшими к ним родственными организмами. Морфологические признаки бактерий в большинстве случаев ограничены немногими формами: шаровидны, палочки, спирали. Необычайная простота и элементарность их внешней организации затрудняют их классификацию. Определение вида бактерии на основе только морфологических признаков невозможно. Научная систематика основана на морфологии и истории развития, но для классификации бактерий необходимо знать не только морфологию, но и их физиологические и биохимические особенности. В связи с этим устанавливаются: отношение бактерий к кислороду, температурным условиям, образование пигмента, разжижение желатина, образование кислот и газа на сахарах, изменение молока при росте в нем бактерий, образование индола, сероводорода, аммиака, редукция нитратов в нитриты или в свободный азот. Однако и этого не всегда бывает достаточно для определения вида бактерии.
Существуют различные системы классификации бактерий, но все они являются условными, и далекими в большей или меньшей мере от естественной классификации. Рассмотрение этих систем или хотя бы одной из них в данном случае не является необходимым даже в применении к фитопатогенным бактериям. Следует лишь сказать, что в настоящее время почти все фитопатогенные бактерии объединены в родах Pseudomonas, Xanthomonas, Bacterium и Erwinia.
В последнее время М. В. Горленко (1961) предложил следующую систему классификации фитопатогенных бактерий класса Eubacteriales:
I. Семейство Mycobacteriaceae (Честер, 1901)-неподвижные бактерии (без жгутиков):
- 1-й род - Gorynebacterium (Леман и Нейман, 1896) - (грамположительные бактерии;
- 2-й род Aplanobacterium (Смит, 1905, Гешич, 1956) - грамотрицательные бактерии.
II. Семейство Pseudomonadaceae (Вильсон и др., 1917) - бактерии со жгутиками (полярными):
- 1-й род - Pseudomonas (Мигула, 1900) - бактерии неокрашенные и флюоресцирующие;
- 2-й род - Xanthomonas (Доусон, 1839) - бактерии с окрашенными колониями.
III. Семейство Bacteriaceae (Кон, 1872) - подвижные бактерии с перитрихальными жгутиками, не образующие опор:
- 1-й род - Bacterium (Эренбергер, 1828) - неокрашенные формы, не образующие пектиназы и протопектиназы;
- 2-й род - Pectobacterium (Уолди, 1945) - неокрашенные формы, образующие пектиназу и протопектиназу;
- 3-й род - Chromobacterium (Бергонцини, 1881) - окрашенные формы.
IV. Семейство Bacillaceae (Фишер, 1895) - подвижные бактерии, спорообразующие палочки:
- 1-й род - Bacillus (Кон, 1832) - клетки при спорообразовании не вздуваются или вздуваются слабо;
- 2-й род - Clostridium (Празновский, 1880) - клетки при спорообразовании вздуваются.
В приведенной выше системе общепринятый до сих пор род Erwinia опущен. Из него выделяется особый род Pectobacterium, в который включаются бактерии с перитрихальными жгутиками и обладающие пектолитической активностью. Те из фитопатогенных бактерий, которые такой способностью не обладают, отнесены к роду Bacterium. Эта система, рациональная сама по себе, нова и пока еще не вошла в быт, поэтому в настоящей работе мы придерживаемся той классификации, в которой роду Erwinia отводится свое место. Такое родовое название фитопатогенных бактерий широко применяется в специальной литературе как в нашей стране, так и за рубежом.
Определение вида бактерий без применения искусственных питательных сред невозможно. В связи с этим можно отметить, что при культивировании бактерий образуют весьма характерные колонии. В таком случае по одному внешнему виду можно судить о видовой принадлежности бактерий.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .
1.5. Современная классификация бактерий В современной систематике бактерий сложилась ситуация, характер- ная и для классификации других организмов: достигнуты успехи в соз- дании филогенетической системы классификации, отражающей основ- ные направления эволюционного развития и родство представителей оп- ределенных таксонов, но сохраняют свое значение искусственные фено- типические классификации, более удобные для идентификации микроор- ганизмов. В настоящее время отсутствует сколько-нибудь детализированная эволюционная система прокариот и, скорее всего, решение этой пробле- мы – дело неблизкого будущего. Особенности прокариот в области мор- фологической, физиолого-биохимической, генетической организации го- ворят о неприменимости к ним хорошо разработанных принципов, ис- пользуемых при построении системы высших организмов. Не останавливаясь на исторических аспектах проблемы систематики бактерий, следует отметить, что наиболее приемлемой филогенетической системой классификации прокариот является система, основанная на со- поставлении последовательности нуклеотидов в 16S-рРНК. Эта система положена в основу 2-го издания многотомной энциклопедии прокариот – Bergey’s Manual of Systematic Bacteriology (Руководство по систематике бактерий Берджи), первый том которой вышел в свет в 2001 г. В этом труде все прокариоты разделены на 26 филогенетических «ветвей» (групп) на основании строения их 16S-рРНК; 23 «ветви» представлены эубактериями, а три – архебактериями. Следует подчеркнуть, что боль- шое количество этих филогенетических групп содержат виды прокариот, которые не выделены в виде чистых культур и поэтому еще детально не изучены. Для представителей данных видов известны в настоящее время только последовательности нуклеотидов в 16S-рРНК. Из 23 групп эубак- терий две филогенетические группы представлены грамположительными бактериями, остальные группы – грамотрицательными. Грамотрицательные бактерии состоят из крупной группы Протеобак- терий (Proteobacteria) и 20 групп остальных бактерий, имеющих данный тип клеточной стенки. Краткая характеристика Протеобактерий, к кото- рым по составу 16S-рРНК наиболее близки митохондрии и хлоропласты большинства эукариот, приведена в табл. 2. Протеобактерии – очень гетерогенная в морфологическом, физиоло- гическом и биохимическом плане группа грамотрицательных бактерий. Для представителей этой группы характерны все типы энергетического метаболизма и питания. Клетки большинства видов Протеобактерий имеют палочковидную, сферическую или вибриоидную форму, размно- жаются в основном бинарным делением, но для некоторых видов харак- терно почкование и образование плодовых тел в сложном клеточном цикле. В этой группе имеются как подвижные за счет жгутиков, так и неподвижные бактерии. По отношению к молекулярному кислороду Протеобактерии бывают облигатными аэробами, облигатными и факуль- тативными анаэробами. Группа Протеобактерий на основании различий в 16S-рРНК разделена на пять подгрупп: альфа, бета, гамма, дельта и эп- силон. Кроме Протеобактерий, к грамотрицательным относятся следующие основные группы эубактерий: водородные термофилы, зеленые нитчатые бактерии, зеленые серные бактерии, цианобактерии, спирохеты, цитофа- ги, бактероиды, хламидии, планктомицеты, дейнококки, хлорофлексусы, фузобактерии, фибробактерии, термодесульфобактерии и др. Филогенетические группы грамположительных бактерий – Actinobacteria и Firmicutes. Группа Actinobacteria («актиномицетная ветвь») пред- ставлена следующими родами бактерий, имеющими в ДНК высокое со- держание ГЦ-пар: Geodermatophilus, Frankia, Streptomyces, Arthrobacter, Micrococcus, Actinomyces, Bifidobacterium, Propionibacterium, Actinoplanes, Nocardia, Rhodococcus, Corynebacterium, Mycobacterium. Группа Firmicutes («клостридиальная ветвь» – главным образом грамположи- тельные бактерии с низким содержанием ГЦ-пар в ДНК) состоит из следующих родов: Clostridium, Lactococcus, Pediococcus, Streptococcus, Enterococcus, Leuconostoc, Listeria, Caryophanon, Staphylococcus, Sarcina, Sporosаrcina, Bacillus, Desulfotomaculum, Heliobacterium, Mycoplasma,Ureaplasma и др. В составе архебактерий выделяют три филогенетические группы: Crenarchaeota, Euryarchaeota и Korarchaeota. Группа Crenarchaeota со- стоит из экстремально термофильных бактерий, большинство представи- телей которых осуществляют метаболизм серы, некоторые восстанавли- вают ионы железа и молибдена. В группу Euryarchaeota входят облигат- но анаэробные метаногенные архебактерии, а также экстремальные тер- мофилы и галофилы. Группа Korarchaeota образована архебактериями, обитающими в горячих серных источниках. До настоящего времени ни один из представителей этой группы (обладающих сходной 16S-рРНК) не выделен в виде чистой культуры, поэтому их фенотипические призна- ки изучены недостаточно. Заканчивая рассмотрение филогенетических ветвей прокариот, сле- дует отметить, что предложенная филогенетическая система, основанная на исследовании нуклеотидных последовательностей только одного гена рибосомной РНК – не более чем одна из технически удобных и разрабо- танных систем упорядочения многочисленных организмов в целях их идентификации, поэтому построить логически верную таксономию бак- терий только с учетом этого признака не представляется возможным. Наиболее признанной и используемой фенотипической классифика- цией бактерий является классификация, представленная в девятом изда- нии Определителя бактерий Берджи. В этом издании бактерии на осно- вании строения пограничного слоя клетки разделены на четыре основ- ные категории (отдела): 1) Gracilicutes (от лат. cutes – кожа, gracilis – тонкий) – грамотрицательные эубактерии, имеющие клеточные стенки; 2) Firmicutes (от лат. firmus – прочный) – грамположительные эубакте- рии, имеющие клеточные стенки; 3) Tenericutes (от лат. tener – мягкий, нежный) – эубактерии, лишенные клеточных стенок; 4) Mendosicutes (от лат. mendosus – ошибочный) – архебактерии, клеточные стенки которых отличаются от аналогичных структур других прокариот. В отдел Gracilicutes входят бактерии различной морфологии с гра- мотрицательной клеточной стенкой. Размножение происходит в основ- ном бинарным делением, некоторые бактерии размножаются почковани- ем. Эндоспор не образуют. Большинство подвижны: встречаются все ти- пы передвижения бактерий – с помощью жгутиков, скольжением, изги- банием. Отдел включает аэробные, анаэробные и факультативные ана- эробные бактерии; фототрофные и хемотрофные бактерии. Отдел под- разделяют на три класса: Scotobacteria, Oxyphotobacteria, Anoxyphotobacteria. В класс Scotobacteria входят грамотрицательные бактерии, не ис- пользующие световую энергию для целей метаболизма, а получающие ее только в результате окислительно-восстановительных реакций. Название класса происходит от греч. sсotos – темнота. Это самый крупный класс бактерий. В класс Anoxyphotobacteria входят пурпурные бактерии, зеле- ные бактерии и гелиобактерии, осуществляющие аноксигенный фото- синтез (без выделения молекулярного кислорода). Класс Oxyphotobacteria представлен цианобактериями и прохлорофитами, осуществляющими оксигенный фотосинтез (с выделением молекулярного кислорода). Этот тип фотосинтеза аналогичен фотосинтезу, протекающему в растениях. В отдел Firmicutes включены бактерии с грамположительной кле- точной стенкой. Клетки могут иметь разную форму: палочки, кокки, ни- тевидные, ветвящиеся. Некоторые представители образуют эндоспоры. Большинство из них неподвижны; подвижные формы имеют перитрихи- альное жгутикование. В состав отдела входят аэробные, анаэробные и факультативно анаэробные бактерии. Отдел состоит из двух классов: Firmibacteria, Thallobacteria. Класс Firmibacteria включает большое ко- личество «неветвящихся» грамположительных бактерий. Класс Thallobacteria включает бактерии, клетки которых способны «ветвиться». Отдел Tenericutes представлен бактериями, не имеющими клеточной стенки. В связи с отсутствием клеточной стенки форма клеток непосто- янна: в чистой культуре одного вида одновременно присутствуют кокко- видные, палочковидные, нитевидные, грушевидные, дисковидные и дру- гие клетки. Размножение бактерий, входящих в этот отдел, происходит бинарным делением, почкованием. Окрашивание по Граму отрицатель- ное. Характерно образование мелких, врастающих в агар колоний. Могут быть сапрофитными, паразитами или патогенами. Отдел состоит из од- ного класса Mollicutes (микоплазмы). Отдел Mendosicutes образован бактериями с ригидной клеточной стенкой, но не содержащей пептидогликана муреина. Большинство пред- ставителей – строгие анаэробы, многие из которых имеют жгутики. Ви- ды характеризуются экологическим и метаболическим разнообразием, способностью жить в экстремальных условиях. Отдел состоит из одного класса – Archaebacteria. В составе четырех отделов (основных категорий) выделено 35 групп (или секций) бактерий, которые в большей или меньшей степени будут охарактеризованы в последующих главах. К отделу Gracilicutes принадлежат следующие группы. Группа 1. Спирохеты. Группа 2. Аэробные (или микроаэрофильные), подвижные, спирале- видные (или вибриоидные) грамотрицательные бактерии. Группа 3. Неподвижные или редко подвижные грамотрицательные изогнутые бактерии. Группа 4. Грамотрицательные аэробные (или микроаэрофильные) па- лочки и кокки. Группа 5. Факультативно аэробные грамотрицательные палочки. Группа 6. Грамотрицательные анаэробные прямые, изогнутые или спиралевидные палочки. Группа 7. Бактерии, осуществляющие диссимиляционное восстанов- ление серы или сульфата. Группа 8. Анаэробные грамотрицательные кокки. Группа 9. Риккетсии и хламидии. Группа 10. Аноксигенные фототрофные бактерии. Группа 11. Оксигенные фототрофные бактерии. Группа 12. Аэробные хемолитотрофные бактерии и близкие организ- мы. Группа 13. Почкующиеся и (или) образующие выросты бактерии. Группа 14. Бактерии, имеющие чехлы. Группа 15. Нефотосинтезирующие скользящие бактерии, не обра- зующие плодовых тел. Группа 16. Скользящие бактерии, образующие плодовые тела. В отдел Firmicutes входят: Группа 17. Грамположительные кокки. Группа 18. Грамположительные палочки и кокки, образующие эндо- споры. Группа 19. Грамположительные палочки правильной формы, не обра- зующие спор. Группа 20. Грамположительные палочки неправильной формы, не об- разующие спор. Группа 21. Микобактерии. Группы 22–29. Актиномицеты. К отделу Tenericutes принадлежит: Группа 30. Микоплазмы. Отдел Mendosicutes включает: Группа 31. Метаногены. Группа 32. Сульфатредуцирующие архебактерии. Группа 33. Экстремально галофильные архебактерии (галобактерии). Группа 34. Архебактерии, лишенные клеточной стенки. Группа 35. Экстремально термофильные и гипертермофильные архе- бактерии, метаболизирующие серу. В заключение следует подчеркнуть, что большинство микроорганиз- мов, существующих в природных сообществах, еще должно быть выде- лено в чистые культуры. Считается, что в настоящее время культивиро- вать можно только 0,1 % всего микробного разнообразия, а остальных представителей бактерий вырастить и идентифицировать не удается, хо- тя уже в чистую культуру выделены и описаны около 5 тыс. видов про- кариот.2.2. Классификация и морфология бактерий
Классификация бактерий . Решением Международного кодекса для бактерий рекомендованы следующие таксономические категории: класс, отдел, порядок, семейство, род, вид. Название вида соответствует бинарной номенклатуре, т. е. состоит из двух слов. Например, возбудитель сифилиса пишется как Treponema pallidum . Первое слово - на-
звание рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы. При повторном упоминании вида родовое название сокращается до начальной буквы, например: Т. pallidum .
Бактерии относятся к прокариотам, т.е. доядерным организмам, поскольку у них имеется примитивное ядро без оболочки, ядрышка, гистонов. а в цитоплазме отсутствуют высокоорганизованные органеллы (митохондрии, аппарат Гольджи, лизосомы и др.)
В старом Руководстве Берджи по систематической бактериологии бактерии делили по особенностям клеточной стенки бактерий на 4 отдела:Gracilicutes - эубактерии с тонкой клеточнойстенкой, грамотрицательные; Firmicutes - эубактерии с толстой клеточной стенкой, грамположи-тельные; Tenericutes - эубактерии без клеточной стенки; Mendosicutes - архебактерии с дефектной клеточной стенкой.
Каждый отдел был разделен на секции, или группы, по окраске по Граму, форме клеток, потребности в кислороде, подвижности, особенностям метаболизма и питания.
Согласно 2-му изданию (2001 г.) Руководства Берджи, бактерии делят на 2 домена: «Bacteria» и «Archaea» (табл. 2.1).
Таблица. Характеристика доменов Bacteria и Archaea
|
Домен «Bacteria» (эубактерии) |
Домен «Archae а» (архебактерии) |
|
В домене «Bacteria» можно выделить следующие бактерии: 1)бактерии с тонкой клеточной стенкой, грамотрицательные*; 2)бактерии с толстой клеточной стенкой, грамположительные**; 3)бактерии бет клеточной стенки (класс Mollicutes - микоплаз- мы) |
Архсбактерии не содержат пепти-догликан в клеточной стенке. Они имеют особые рибосомы и рибосом-ные РНК (рРНК). Термин «архебактерии- появился в 1977 г. Это одна из древних форм жизни, на что указывает приставка «архе». Среди них нет возбудителей инфекций |
*Среди тонкостенных грамотрицательных эубактерий различают:
сферические формы, или кокки (гонококки, менингококки, вейлонеллы);
извитые формы - спирохеты и спириллы;
палочковидные формы, включая риккетсии.
** К толстостенным грамположительным эубактериям относят:
сферические формы, или кокки (стафилококки, стрептококки, пневмококки);
палочковидные формы, а также актиномицеты (ветвящиеся, нитевидные бактерии), коринебактерии (булавовидные бактерии), микобактерии и бифидобактерии (рис. 2.1).
Большинство грамотрицательных бактерий объединены в тип протеобактериий. основанный на сходстве по рибосомной РНК «Proteobacteria» - по имени греческого бога Протеуса. принимавшего разнообразные облики). Они появились от общего фотосинте-тического предка.
Грамположительные бактерии, согласно изученным последовательностям рибосомной РНК, являются отдельной филогенетической группой с двумя большими подотделами - с высоким и низким соотношением G + C (генетическое сходство). Как и протеобактерии, эта группа метаболически разнообразная.
В домен « Bacteria » входят 22 типа, из кото рых медицинское значение имеют следующие:
Тип Proteobacteria
Класс Alphaproteobacteria. Роды : Rickettsia, Orientia, Ehrlichia, Bartonella, Brucella
Класс Betaproteobacteria. Роды : Burkholderia, Alcaligenes, Bordetella, Neisseria, Kingella, Spirillum
Класс Gammaproteobacteria. Роды : Francisella, Legionella, Coxiella, Pseudomonas, Moraxella, Acinetobacter, Vibrio, Enterobacter, Callimatobacterium, Citrobacter, Edwardsiella, Erwinia, Escherichia, Hafnia, Klebsiella, Morganella, Proteus, Providencia, Salmonella, Serratia, Shigella, Yersinia, Pasteurella
Класс Deltaproteobacteria. Род: Bilophila
Класс Epsilonproteobacteria. Роды : Campylobacter, Helicobacter, Wolinella
Тип Firmicutes (главным образом грамполо жительные )
Класс Clostridia. Роды : Clostridium, Sarcina, Peptostreptococcus, Eubacterium, Peptococcus, Veillonella (грамотрицательные)
Класс Mollicutes. Роды: Mycoplasma, Ureaplasma
Класс Bacilli. Роды : Bacillus, Sporosarcina, Listeria, Staphylococcus, Gemella, Lactobacillus, Pediococcus, Aerococcus, Leuconostoc, Streptococcus, Lactococcus
Тип Actinobacteria
Класс Actinobacteria. Роды : Actinomyces, Arcanodacterium, Mobiluncus, Micrococcus, Rothia, Stomatococcus, Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, Bifidobacterium, Gardnerella
Тип Clamydiae
Класс Clamydiae. Роды : Clamydia, Clamydophila
Тип Spirochaetes
Класс Spirochaetes. Роды : Spirochaeta, Borrelia, Treponema, Leptospira
Тип Bacteroidetes
Класс Bacteroidetes. Роды : Bacteroides, Porphyromonas, Prevotella
Класс Flavobacteria. Роды: Flavobacterium
Подразделение бактерий по особенностям строения клеточной стенки связано с возможной вариабельностью их окраски в тот или иной цвет по методу Грама. Согласно этому методу, предложенному в 1884 г. датским ученым X. Грамом, в зависимости от результатов окраски бактерии делятся на грамположительные, окрашиваемые в сине-фиолетовый цвет, и грамотрицательные, красящиеся в красный цвет. Однако оказалось, что бактерии с так называемым грамположи-тельным типом клеточной стенки (более толстой, чем у грамотрицательных бактерий), например, бактерии рода Mobiluncus и некоторые спорообразующие бактерии, вместо обычной грамположительной окраски имеют грамотрицательную окраску. Поэтому для таксономии бактерий бульшую значимость, чем окраска по Граму, имеют особенности строения и химического состава клеточных стенок.
2.2.1. Формы бактерий
Различают несколько основных форм бактерий (см. рис. 2.1) - кокковидные, палочковидные, извитые и ветвящиеся, нитевидные формы бактерий.
Сферические формы, или кокки, - шаровидные бактерии размером 0,5-1,0 мкм*, которые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины и стафилококки.
Микрококки (от греч. micros - малый) - отдельно расположенные клетки.
Диплококки (от греч. diploos - двойной), или парные кокки, располагаются парами (пневмококк, гонококк, менингококк), так как клетки после деления не расходятся. Пневмококк (возбудитель пневмонии) имеет с противоположных сторон ланцетовидную форму, а гонококк (возбудитель гонореи) и менингококк (возбудитель эпидемического менингита) имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу.
Стрептококки (от греч. streptos - цепочка) - клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.
Сарцины (от лат. sarcina - связка, тюк) располагаются в виде пакетов из 8 и более кокков, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.
Стафилококки (от греч. staphyle - виноградная гроздь) - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.
Палочковидные бактерии различаются по размерам, форме концов клетки и взаимному расположению клеток. Длина клеток варьирует от 1,0 до 10 мкм, толщина - от 0,5 до 2,0 мкм. Палочки могут быть правильной (кишечная палочка и др.) и неправильной (коринебактерии и др.) формы, в том числе ветвящиеся, например, у актиномицетов. К наиболее мелким палочковидным бактериям относятся риккетсии.
Концы палочек могут быть как бы обрезанными (сибиреязвенная бацилла), закругленными (кишечная палочка), заостренными (фузобактерии) или в виде утолщения. В последнем случае палочка похожа на булаву (коринебактерии дифтерии).
Слегка изогнутые палочки называются вибрионами (холерный вибрион). Большинство палочковидных бактерий располагается беспорядочно, так как после деления клетки расходятся. Если после деления клетки остаются связанны-
ми общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).
Извитые формы - спиралевидные бактерии, например спириллы, имеющие вид штопоро-образно извитых клеток. К патогенным спириллам относится возбудитель содоку (болезнь укуса крыс). К извитым также относятся кам-пилобактерии и хеликобактерии, имеющие изгибы как у крыла летящей чайки; близки к ним и такие бактерии, как спирохеты. Спирохеты - тонкие, длинные, извитые
спиралевидной формы) бактерии, отличающиеся от спирилл подвижностью, обусловленной сгибательными изменениями клеток. Спирохеты состоят из наружной мембраны
клеточной стенки), окружающей протоплазматический цилиндр с цитоплазматической мембраной и аксиальной нитью (аксистиль). Ахсиальная нить находится под наружной мембраной клеточной стенки (в периплазме) и как бы закручивается вокруг протоплазма-тического цилиндра спирохеты, придавая ей винтообразную форму (первичные завитки спирохет). Аксиальная нить состоит из перип-лазматических фибрилл - аналогов жгутиков бактерий и представляет собой сократительный белок флагеллин. Фибриллы прикреплены к концам клетки (рис. 2.2) и направлены навстречу друг другу. Другой конец фибрилл свободен. Число и расположение фибрилл варьируют у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками. Спирохеты
плохо воспринимают красители. Обычно их окрашивают по Романовскому-Гимзе или серебрением. В живом виде спирохеты исследуют с помощью фазово-контрастной или темнопольной микроскопии.
Спирохеты представлены 3 родами, патогенными для человека: Treponema , Borrelia , Leptospira .
Трепонемы (род Treponema) имеют вид тонких штопорообразно закрученных нитей с 8-12 равномерными мелкими завитками. Вокруг протопласта трепонем расположены 3-4 фибриллы (жгутики). В цитоплазме имеются цитоплазматические филаменты. Патогенными представителями являются Т. pallidum - возбудитель сифилиса, Т. pertenue - возбудитель тропической болезни - фрам-безии. Имеются и сапрофиты - обитатели полости рта человека, ила водоемов.
Боррелии (род Borrelia ), в отличие от трепонем, более длинные, имеют по 3-8 крупных завитков и 7-20 фибрилл. К ним относятся возбудитель возвратного тифа (В. recurrentis ) и возбудители болезни Лайма (В. burgdorferi и др.).
Лептоспиры (род Leptospira ) имеют завитки неглубокие и частые - в виде закрученной веревки. Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобретают вид букв S или С; имеют 2 осевые нити (жгутики). Патогенный представитель L . in terrogans вызывает лептоспироз при попадании в организм с водой или пищей, приводя к развитию кровоизлияний и желтухи.
нием в цитоплазме, а некоторые - в ядре инфицированных клеток. Обитают в членистоногих (вшах, блохах, клещах) которые являются их хозяевами или переносчиками. Свое название риккетсии получили по имени X. Т. Риккетса - американского ученого, впервые описавшего одного из возбудителей (пятнистая лихорадка Скалистых гор). Форма и размер риккетсии могут меняться (клетки неправильной формы, нитевидные) в зависимости от условий роста. Структура риккетсии не отличается от таковой грамотрицательных бактерий.
Риккетсии обладают независимым от клетки хозяина метаболизмом, однако, возможно, они получают от клетки хозяина макроэр-гические соединения для своего размножения. В мазках и тканях их окрашивают по Романовскому-Гимзе, по Маккиавелло- Здродовскому (риккетсии красного цвета, а инфицированные клетки - синего).
У человека риккетсии вызывают эпидемический сыпной тиф (Rickettsia prowazekii ), клещевой риккетсиоз (R . sibirica ), пятнистую лихорадку Скалистых гор (R . rickettsii ) и другие риккетсиозы.
Элементарные тельца попадают в эпителиальную клетку путем эндоцитоза с формированием внутриклеточной вакуоли. Внутри клеток они увеличиваются и превращаются в делящиеся ретикулярные тельца, образуя скопления в вакуолях (включения). Из ретикулярных телец образуются элементарные тельца, которые выходят из клеток путем эк-зоцитоза или лизиса клетки. Вышедшие из
клетки элементарные тельца вступают в новый цикл, инфицируя другие клетки (рис. 16.11.1). У человека хламидии вызывают поражения глаз (трахома, конъюнктивит), уро-генитального тракта, легких и др.
Актиномицеты - ветвящиеся, нитевидные или палочковидные грамположительные бактерии. Свое название (от греч. actis - луч, mykes - гриб) они получили в связи с образованием в пораженных тканях друз - гранул из плотно переплетенных нитей в виде лучей, отходящих от центра и заканчивающихся кол-бовидными утолщениями. Актиномицеты, как и грибы, образуют мицелий - нитевидные переплетающиеся клетки (гифы). Они формируют субстратный мицелий, образующийся в результате врастания клеток в питательную среду, и воздушный, растущий на поверхности среды. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокко-видные бактерии. На воздушных гифах акти-номицетов образуются споры, служащие для размножения. Споры актиномицетов обычно не термостойки.
Общую филогенетическую ветвь с актино-мицетами образуют так называемые нокарди-оподобные (нокардиоформные) актиномицеты- собирательная группа палочковидных, неправильной формы бактерий. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium , Mycobacterium , Nocardianjxp . Нокардиоподобные актиномицеты отличаются наличием в клеточной стенке Сахаров арабинозы, галактозы, а также миколовых кислот и больших количеств жирных кислот. Миколовые кислоты и липиды клеточных стенок обуславливают кис-лотоустойчивость бактерий, в частности ми-кобактерий туберкулеза и лепры (при окраске по Цилю-Нельсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты - синий цвет).
Патогенные актиномицеты вызывают акти-номикоз, нокардии - нокардиоз, микобакте-рии - туберкулез и лепру, коринебактерии - дифтерию. Сапрофитные формы актиномицетов и нокардиеподобных актиномицетов широко распространены в почве, многие из них являются продуцентами антибиотиков.
Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мембраной «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она участвует в процессе деления клетки и транспорте метаболитов, имеет рецепторы для бактериофагов, бактериоцинов и различных веществ. Наиболее толстая клеточная стенка у грамположительных бактерий (рис. 2.4 и 2.5). Так, если толщина клеточной стенки грамотрицательных бактерий около 15-20 нм, то у грамположительных она может достигать 50 нм и более.
Микоплазмы - мелкие бактерии (0,15-1,0 мкм), окруженные только цитоплазматической мембраной. Они относятся к классу Mollicutes , содержат стеролы. Из-за отсутствия клеточной стенки микоплазмы осмотически чувствительны. Имеют разнообразную форму: кокковидную, нитевидную, колбовидную. Эти формы видны при фазово-кон-трастной микроскопии чистых культур микоплазм. На плотной питательной среде микоплазмы образуют колонии, напоминающие яичницу-глазунью: центральная непрозрачная часть, погруженная в среду, и просвечивающая периферия в виде круга.
Микоплазмы вызывают у человека атипичную пневмонию (Mycoplasma pneumoniae ) и поражения мочеполового тракта (М. homi - nis и др.). Микоплазмы вызывают заболевания не только у животных, но и у растений. Достаточно широко распространены и непатогенные представители.
2.2.2. Структура бактериальной клетки
Структура бактерий хорошо изучена с помощью электронной микроскопии целых клеток и их улыратонких срезов, а также других методов. Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазматической мембраны. Под оболочкой находится протоплазма, состоящая из цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили (рис. 2.3). Некоторые бактерии в неблагоприятных условиях способны образовывать споры.
В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (му-реин, мукопептид), составляющий 40-90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка), молекулы которых представляют собой цепи из 8-50 остатков глицерола и рибитола, соединенных фосфатными мостиками. Форму и прочность бактериям придает жесткая волокнистая структура многослойного, с поперечными пептидными сшивками, пептидогликана.
Пептидогликан представлен параллельно расположенными молекулами гликана . состоящего из повторяющихся остатков N-аце-тилглюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидной связью. Эти связи разрывает лизоцим, являющийся аце-тилмурамидазой. Гликановые молекулы соединены через N-ацетилмурамовую кислоту поперечной пептидной связью из четырех аминокислот (тетрапептида ). Отсюда и название этого полимера - пептидогликан.
Основу пептидной связи пептидогликана грамотрицательных бактерий составляют тетрапеп-тиды, состоящие из чередующихся L- и D-ами-нокислот, например: L-аланин - D-глутаминовая кислота - мезо-диаминопимелиновая кислота - D-аланин. У Е. coli (грамотрицательная бактерия) пептидные цепи соединены друг с другом через D-аланин одной цепи и мезо-диаминопимели-
новую кислоту - другой. Состав и строение пептидной части пептидогликана грамотрицательных бактерий стабильны в отличие от пептидогликана грамположительных бактерий, аминокислоты которого могут отличаться по составу и последовательности. Тетрапептиды пептидогликана у грамположительных бактерий соединены друг с другом полипептидными цепочками из 5 остатков
глицина (пентаглицина). Вместо мезо-диамино-пимелиновой кислоты они часто содержат лизин. Элементы гликана (ацетилглюкозамин и аце-тилмурамовая кислота) и аминокислоты тетра-пептида (мезо-диаминопимелиновая и D-глу-таминовая кислоты, D-аланин) являются отличительной особенностью бактерий, поскольку отсутствуют у животных и человека.
Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиолетовая окраска бактерий) связана со свойством многослойного пептидогликана взаимодействовать с красителем. Кроме этого, последующая обработка мазка бактерий спиртом вызывает суживание пор в пептидогликане и тем самым задерживает краситель в клеточной стенке. Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана (5-10 % массы клеточной стенки); они обесцвечиваются спиртом и при обработке фуксином или сафранином приобретают красный цвет.
В состав клеточной стенки грамотрица-тельных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана (рис. 2.4 и 2.6). Наружная мембрана при электронной микроскопии ультратонких срезов бактерий имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплаз-матической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов.
Наружная мембрана является мозаичной структурой, представленной липополисахари-дами, фосфолипидами и белками. Внутренний слой ее представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Таким образом, наружная мембрана асимметрична. ЛПС наружной мембраны состоит из трех фрагментов:
липида А - консервативной структуры, практически одинаковой у грамотрицатель-ных бактерий;
ядра, или стержневой, коровой части (лат. core - ядро), относительно консервативной олигосахаридной структуры;
высоковариабельной О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями.
ЛПС «заякорен» в наружной мембране ли-пидом А, обуславливающим токсичность Л ПС и отождествляемым поэтому с эндотоксином. Разрушение бактерий антибиотиками приводит к освобождению большого количества эндотоксина, что может вызвать у больного эндотоксический шок. От липида А отходит ядро, или стержневая часть ЛПС. Наиболее постоянной частью ядра ЛПС является кето-дезоксиоктоновая кислота (З-деокси-О-ман-но-2-октулосоновая кислота). О-специфическая цепь, отходящая от стержневой части молекулы ЛПС, обусловливает серогруппу, серовар (разновидность бактерий, выявляемая с помощью иммунной сыворотки) определенного штамма бактерий. Таким образом, с понятием ЛПС связаны представления об О-антигене, по которому можно дифференцировать бактерии. Генетические изменения могут привести к дефектам, «укорочению» ЛПС бактерий и к появлению в результате этого «шероховатых» колоний R-форм.
Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы с относительной массой до 700 Да.
Между наружной и цитоплазматической мембраной находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы,
нуклеазы, бета-лактамазы), а также компоненты транспортных систем.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма и других соединений образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. После удаления ингибитора клеточной стенки такие измененные бактерии могут реверсировать, т. е. приобретать полноценную клеточную стенку и восстанавливать исходную форму.
Бактерии сферо- или протопластного типа, утратившие способность к синтезу пеп-тидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами (от названия Института им. Д. Листера, где они впервые были изучены). L-формы могут возникать и в результате мутаций. Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку. L-формы могут образовывать многие возбудители инфекционных болезней.
Цитоплазматическая мембр ана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм каждый разделены светлым - промежуточным). По структуре (см. рис. 2.5 и 2.6) она похожа на плазмалемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов, с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. Некоторые из них являются пермеазами, участвующими в транспорте веществ.
Цитоплазматическая мембрана является динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она окружает наружную часть цитоплазмы бактерий и участвует в регуляции осмотического давле-
ния, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, аденозинтрифосфатазы и др.).
При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячива-ния в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предполагают даже, что они являются артефактом, возникающим после приготовления (фиксации) препарата для электронной микроскопии. Тем не менее считают, что производные цитоплаз-матической мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточной стенки, принимают участие в секреции веществ, спорообразовании, т. е. в процессах с высокой затратой энергии.
Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков.
Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от SOS-рибосом, характерных для эукариотических клеток. Поэтому некоторые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы - 50S и 30S. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, a 23S рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и
зыполняют роль запасных веществ для питания и энергетических потребностей.
Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голубым волютин окрашивается в красно-фиолетовый цвет, а цитоплазма бактерии - в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризо-ванного неорганического полифосфата. При электронной микроскопии они имеют вид электронно-плотных гранул размером 0,1-1,0 мкм.
Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, пред-ставленная замкнутой в кольцо молекулой ДHK При нарушении деления в ней может сходиться 4 и более хромосом. Нуклеоид выявляется в световом микроскопе после ок-раски специфическими для ДНК методами: по Фельгену или по Романовскому-Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДHK, связанной определенными участками с
цитоплазматической мембраной или мезосо-
мой, участвующими в репликации хромосомы (см. рис. 2.5 и 2.6).
Кроме нуклеоида, представленного одной
хромосомой, в бактериальной клетке имеются
вне хромосомные факторы наследственности -
плазмиды (см. разд. 5.1.2.), представляющие
собой ковалентно замкнутые кольца ДНК.
Капсула, микрокапсула, слизь . Капсула -
слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бак-терий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпе-чатках из патологического материала. В чис-тых культурах бактерий капсула образуется
реже. Она выявляется при специальных методах окраски мазка по Бурри-Гинсу, создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы.
Капсула состоит из полисахаридов (эк-зополисахаридов), иногда из полипептидов; например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, включает большое количество воды. Она препятствует фагоцитозу бактерий. Капсула антиген-на: антитела против капсулы вызывают ее увеличение (реакция набухан ия капсу лы).
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слизь - муко-идные экзополисахариды, не имеющие четких внешних границ. Слизь растворима в воде.
Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палочки, часто встречающихся в мокроте больных с кистозным фиброзом. Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам); их еще называют глико-
каликсом. Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.
Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, являясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизма и бактериофагов.
Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоп-лазматической мембраны, имеют большую длину, чем сама клетка (рис. 2.7). Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары - у грамотри-цательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем - ротором, вращающим жгутик. В качестве источника энергии используется разность протонных потенциалов на цитоплазматической мембране. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгутика может достигать 100 об/с. При наличии у бактерии нескольких жгутиков они начинают синхронно вращаться, сплетаясь в единый пучок, образующий своеобразный пропеллер.
Жгутики состоят из белка - флагеллина (от. flagellum - жгутик), являющегося антигеном - так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.
Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелыми металлами, или в световом микроскопе после обработки специальными методами, основанными на протравливании и адсорбции различных
веществ, приводящих к увеличению толщины жгутиков (например, после серебрения).
Ворсинки, или пили (фимбрии) - нитевидные образования (рис. 2.7), более тонкие и короткие (3+10 нм х 0,3+10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Они обладают антигенной активностью. Различают пили, ответственные за адгезию, т. е. за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водно-солевой обмен, и половые (F-пили), или конъюгационные, пили.
Обычно пили многочисленны - несколько сотен на клетку. Однако половых пил ей обычно бывает 1-3 на клетку: они образуются так называемыми «мужскими» клетками-донорами, содержащими трансмиссивные плазмиды (F -, R -, Соl-плазмиды). Отличительной особенностью половых пилей является их взаимодействие с особыми «мужскими» сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях (рис. 2.7).
Споры - своеобразная форма покоящихся бактерий с грамположительным типом строения клеточной стенки (рис. 2.8).
Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.). Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не являет- i ся способом размножения, как у грибов.
Спорообразуюшие бактерии рода Bacillus , у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие бактерии, у которых размер споры превышает диаметр клетки, отчего они принимают форму веретена, называются клостридиями, например бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нельсена з красный, а вегетативная клетка - в синий.
Спорообразование, форма и расположение спор в клетке (вегетативной) являются видовым свойством бактерий, что позволяет отличать их друг от друга. Форма спор может быть овальной, шаровидной; расположение в клетке - терминальное, т. е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное у сибиреязвенной бациллы).
Процесс спорообразованя (споруляция) проходит ряд стадий, в течение которых часть цитоплазмы и хромосома бактериальной вегетативной клетки отделяются, окружаясь врастающей цитоплазматической мембраной, - образуется проспора. Проспору окружают две цитоплазма-тические мембраны, между которыми формируется толстый измененный пептидогликановый слой кортекса (коры). Изнутри он соприкасается с клеточной стенкой споры, а снаружи - с внутренней оболочкой споры. Наружная оболочка споры образована вегетативной клеткой. Споры некоторых бактерий имеют дополнительный покров - экзоспориум. Таким образом формируется многослойная плохо проницаемая оболочка. Спорообразование сопровождается интенсивным потреблением проспорой, а затем и формирующейся оболочкой споры дипиколи-новой кислоты и ионов кальция. Спора приобретает термоустойчивость, которую связывают с наличием в ней дипиколината кальция.
Спора долго может сохраняться из-за наличия многослойную оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В почве, например, возбудители сибирской язвы и столбняка могут сохраняться десятки лет.
В благоприятных условиях споры прорастают, проходя три последовательные стадии: ак-
тивацию, инициацию, вырастание. При этом из одной споры образуется одна бактерия. Активация- это готовность к прорастанию. При температуре 60-80 °С спора активируется для прорастания. Инициация прорастания длится несколько минут. Стадия вырастания характеризуется быстрым ростом, сопровождающимся разрушением оболочки и выходом проростка.

