Что такое волновая функция. Понятие о волновой функции. Философский смысл волновой функции
Как известно, основная задача классической механики заключается в определении положения макрообъекта в любой момент времени. Для этого составляется система уравнений, решение которой позволяет выяснить зависимость радиус-вектора от времени t . В классической механике состояние частицы при ее движении в каждый момент задается двумя величинами: радиус-вектором и импульсом . Таким образом, классическое описание движения частицы правомерно, если оно происходит в области с характерным размером, много большим, чем длина волны де Бройля . В противном случае (например, вблизи ядра атома) следует принимать во внимание волновые свойства микрочастиц. Об ограниченной применимости классического описания микрообъектов, имеющих волновые свойства, и говорят соотношения неопределенностей.
С учетом наличия у микрочастицы волновых свойств ее состояние в квантовой механике задается с помощью некоторой функции координат и времени (x, y, z, t ) , называемой волновой или - функцией . В квантовой физике вводится комплексная функция, описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности).
Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения решения в частных физических задачах. Таким уравнением является уравнение Шрёдингера .
Теория, описывающая движение малых частиц с учетом их волновых свойств, называется квантовой , или волновой механикой . Многие положения этой теории кажутся странными и непривычными с точки зрения представлений, сложившихся при изучении классической физики. Следует всегда помнить, что критерием правильности теории, какой бы странной она не казалась поначалу, является совпадение ее следствий с опытными данными. Квантовая же механика в своей области (строение и свойства атомов, молекул и отчасти атомных ядер) прекрасно подтверждается опытом.
Волновая функция описывает состояние частицы во всех точках пространства и для любого момента времени. Для понимания физического смысла волновой функции обратимся к опытам по дифракции электронов. (Опыты Томсона и Тартаковского по пропусканию электронов через тонкую металлическую фольгу). Оказывается, что четкие дифракционные картины обнаруживаются даже в том случае, если направлять на мишень одиночные электроны, т.е. когда каждый последующий электрон испускается после того, как предыдущий достигнет экрана. После достаточной продолжительной бомбардировки картина на экране будет в точности соответствовать той, которая получается при одновременном направлении на мишень большого числа электронов.
Из этого можно сделать вывод о том, движение любой микрочастицы по отдельности, в том числе и место ее обнаружения, подчиняется статистическим (вероятностным) закономерностям, и при направлении на мишень одиночного электрона точку на экране, в которой он будет зафиксирован, заранее со 100%-й уверенностью предсказать невозможно.
В дифракционных опытах Томсона на фотопластинке образовывалась система темных концентрических колец. Можно с уверенностью сказать, что вероятность обнаружения (попадания) каждого испущенного электрона в различных местах фотопластинки неодинакова. В области темных концентрических колец эта вероятность больше, чем в остальных местах экрана. Распределение электронов по всему экрану оказывается таким же, каким является распределение интенсивности электромагнитной волны в аналогичном дифракционном опыте: там, где интенсивность рентгеновской волны велика, частиц в опыте Томсона регистрируется много, а там, где интенсивность мала - частицы почти не появляются.
С волновой точки зрения наличие максимума числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волны де Бройля. Это послужило основанием для статистического (вероятностного) истолкования волны де Бройля . Волновая функция как раз и является математическим выражением, которое позволяет описать распространение какой-либо волны в пространстве. В частности, вероятность найти частицу в данной области пространства пропорциональна квадрату амплитуды волны, связанной с частицей.
Для одномерного движения (например, в направлении оси Ox ) вероятность dP обнаружения частицы в промежутке между точками x и x + dx в момент времени t равна
dP = , (6.1)
где | (x,t )| 2 = (x,t ) *(x,t ) - квадрат модуля волновой функции (значок * обозначает комплексное сопряжение).
В общем случае при движении частицы в трехмерном пространстве вероятность dP обнаружения частицы в точке с координатами (x,y,z) в пределах бесконечно малого объема dV задается аналогичным уравнением: dP = | (x,y,z,t) | 2 dV . Впервые вероятностную интерпретацию волновой функции дал Борн в 1926г.
Вероятность обнаружить частицу во всем бесконечном пространстве равна единице. Отсюда следует условие нормировки волновой функции:
. (6.2)
Величина является плотностью вероятности , или, что то же самое, плотностью распределение координат частиц. В простейшем случае одномерного движения частицы вдоль оси ОX среднее значение ее координаты вычисляется следующим соотношением:
<x(t )>= . (6.3)
Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной), непрерывной (вероятность не может меняться скачком) и гладкой (без изломов) во всем пространстве.
Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Ψ1, Ψ2 , Ψn , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:
где Cn (n = 1, 2, 3) - произвольные, вообще говоря, комплексные числа.
Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовуютеорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.
Волновая функция Ψ является основной характеристикой состояниямикрообъектов.
Например, среднее расстояние <r > электрона отядра вычисляется по формуле:
где вычисления проводятся, как и в случае (6.3). Таким образом, точно предсказать в дифракционных опытах, в каком месте экрана будет зафиксирован тот или иной электрон, невозможно, даже заранее зная его волновую функцию. Можно лишь с определенной вероятностью предположить, что электрон будет зафиксирован в определенном месте. В этом отличие поведения квантовых объектов от классических. В классической механике при описании движения макротел мы со 100%-й вероятностью знали заранее, в каком месте пространства будет находиться материальная точка (например, космическая станция) в любой момент времени.
Де Бройль использовал представление о фазовых волнах (волнах вещества или волнах де Бройля) для наглядного толкования правила квантования орбит электрона в атоме по Бору в случае одноэлектронного атома. Он рассмотрел фазовую волну, бегущую вокруг ядра по круговой орбите электрона. Если на длине орбиты укладывается целое число этих волн , то волна при обходе вокруг ядра будет всякий раз возвращаться в исходную точку с той же фазой и амплитудой. В этом случае орбита становится стационарной и не возникает излучения. Де Бройль записал условие стационарности орбиты или правило квантования в виде:
где R - радиус круговой орбиты, п - целое число (главное квантовое число). Полагая здесь и учитывая, что L = RP есть момент импульса электрона, получим:
что совпадает с правилом квантования орбит электрона в атоме водорода по Бору.
В дальнейшем условие (6.5) удалось обобщить и на случай эллиптических орбит, когда длина волны меняется вдоль траектории электрона. Однако, в рассуждениях де Бройля предполагалось, что волна распространяется не в пространстве, а вдоль линии - вдоль стационарной орбиты электрона. Этим приближением можно пользоваться в предельном случае, когда длина волны пренебрежимо мала по сравнению с радиусом орбиты электрона.
Экспериментальное подтверждение идеи Луи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая соотношением неопределенностей, а также противоречия ряда экспериментов с применяемыми в начале XX века теориями привели к новому этапу развития квантовой физики – созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX века и связано, прежде всего, с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.
Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно, хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.
Чтобы устранить эти трудности, немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятность , а величина , названная амплитудой вероятности и обозначаемая . Эту величину называют также волновой функцией (или -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:
|
|
(4.3.1) |
где , где – функция комплексно-сопряженная с Ψ.
Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический , вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волны де Бройля) определяет вероятность нахождения частицы в момент времени в области с координатами x и dx , y и dy , z и dz .
Итак, в квантовой механике состояние частицы описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых
| . | (4.3.2) |
Величина
(квадрат модуля Ψ-функции) имеет смысл плотности вероятности
, т.е. определяет вероятность нахождения частицы в единице объема в окрестности точки
, имеющей
координаты
x
, y
, z
. Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля , которым определяется интенсивность волн де Бройля
.
Вероятность найти частицу в момент времени t в конечном объеме V , согласно теореме о сложении вероятностей, равна:
.
Т.к. определяется как вероятность, то необходимо волновую функцию Ψ представить так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей:
| (4.3.3) |
где данный интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x , y , z от до . Таким образом, условие нормировки говорит об объективном существовании частицы во времени и пространстве.
Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть:
· конечной (вероятность не может быть больше единицы);
· однозначной (вероятность не может быть неоднозначной величиной);
· непрерывной (вероятность не может меняться скачком).
Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями , , … , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:
где (n = 1, 2, 3…) – произвольные, вообще говоря, комплексные числа.
Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории , в которой для независимых событий справедлива теорема сложения вероятностей.
Волновая функция Ψ является основной характеристикой состояния микрообъектов . Например, среднее расстояние электрона от ядра вычисляется по формуле
,
Всякая микрочастица – это образование особого рода, сочетающее в себе свойства и частицы, и волны. Отличие микрочастицы от волны состоит в том, что она обнаруживается как неделимое целое. Например, никто не наблюдал полэлектрона. В тоже время волну можно разделить на части и затем воспринимать каждую часть в отдельности.
Отличие микрочастицы в квантовой механике от обычной микрочастицы заключается в том, что она не обладает одновременно определенными значениями координат и импульса, поэтому понятие траектории для микрочастицы утрачивает смысл.
Распределение
вероятности нахождения частицы в данный
момент времени в некоторой области
пространства будем описывать волновой
функцией
(x
,
y
,
z
,
t
)
(пси-функция). Вероятность dP
того, что частица находится в элементе
объема dV
,
пропорциональная
и элементу объему dV
:
dP
=
dV
.
Физический смысл
имеет не сама функция
,
а квадрат ее модуля – это плотность
вероятности. Она определяет вероятность
пребывания частицы в данной точке
пространства.
Волновая функция
является основной характеристикой
состояния микрообъектов (микрочастиц).
С ее помощью в квантовой механике могут
быть вычислены средние значения
физических величин, которые характеризуют
данный объект, находящийся в состоянии,
описываемом волновой функцией
.
3.2. Принцип неопределенности
В классической механике состояние частицы задают координатами, импульсом, энергией и т.п. Это динамические переменные. Микрочастицу описывать такими динамическими переменными нельзя. Особенность микрочастиц состоит в том, что не для всех переменных получаются при измерениях определенные значения. Например, частица не может иметь одновременно точных значений координаты х и компоненты импульса р х . Неопределенность значений х и р х удовлетворяет соотношению:
(3.1)
– чем меньше неопределенность координаты Δх , тем больше неопределенность импульса Δр х , и наоборот.
Соотношение (3.1) называется соотношением неопределенности Гейзенберга и было получено в 1927 г.
Величины Δх и Δр х называются канонически сопряженными. Такими же канонически сопряженными являются Δу и Δр у , и т.п.
Принцип неопределенности Гейзенберга гласит: произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка ħ.
Энергия и время тоже
являются канонически сопряженными,
поэтому
.
Это означает, что определение энергии
с точностью ΔЕ
должно занять интервал
времени:
Δt ~ ħ/ ΔЕ .
Определим значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Δх , расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель ее составляющая импульса р х имеет точное значение, р х = 0 (щель перпендикулярна к вектору импульса), поэтому неопределенность импульса равна нулю, Δр х = 0, зато координата х частицы является совершенно неопределенной (рис.3.1).
В
момент прохождения частицы через щель
положение меняется. Вместо полной
неопределенности координаты х
появляется неопределенность Δх
, и
появляется неопределенность импульса
Δр
х
.
Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла 2φ , где φ – угол, соответствующий первому дифракционному минимуму (максимумами высших порядков пренебрегаем, т.к. их интенсивность мала по сравнению с интенсивностью центрального максимума).
Таким образом, появляется неопределенность:
Δр х =р sinφ ,
но sinφ = λ / Δх – это условие первого минимума. Тогда
Δр
х
~ рλ/
Δх
,
Δх Δр х ~ рλ = 2πħ ≥ ħ/ 2.
Соотношение неопределенностей указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траектории микрочастиц.
Движение по траектории
характеризуется определенными значениями
скорости частицы и ее координат в каждый
момент времени. Подставив в соотношение
неопределенностей вместо р
х
выражение для импульса
,
имеем:
–
чем больше масса частицы, тем меньше неопределенности ее координаты и скорости, тем с большей точностью применимы к ней понятия траектории.
Например,
для микрочастицы размером 1·10 -6 м
неопределенности Δх и Δ
выходят за пределы точности измерения
этих величин, и движение частицы
неотделимо от движения по траектории.
Соотношение неопределенностей является фундаментальным положением квантовой механики. Оно, например, позволяет объяснить тот факт, что электрон не падает на ядро атома. Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона Δr и неопределенность импульса Δр удовлетворяли соотношению
Δr Δp ≥ ħ/ 2,
и значение r = 0 невозможно.
Энергия электрона в атоме будет минимальна при r = 0 и р = 0, поэтому для оценки наименьшей возможной энергии положим Δr ≈ r , Δp ≈ p . Тогда Δr Δp ≥ ħ/ 2, и для наименьшего значения неопределенности имеем:

нас
интересует только порядок величин,
входящих в это соотношение, поэтому
множитель
можно отбросить. В этом случае имеем
,
отсюда р
= ħ/
r
.
Энергия электрона в атоме водорода
(3.2)
Найдем r , при котором энергия Е минимальна. Продифференцируем (3.2) и приравняем производную к нулю:
,
численные
множители в этом выражении мы отбросили.
Отсюда
- радиус атома (радиус первой боровской
орбиты).
Для энергии имеем
Можно подумать, что с помощью микроскопа удастся определить положение частицы и тем самым ниспровергнуть принцип неопределенности. Однако микроскоп позволит определить положение частицы в лучшем случае с точностью до длины волны используемого света, т.е. Δх ≈ λ , но т.к. Δр = 0, то Δр Δх = 0 и принцип неопределенности не выполняется?! Так ли это?
Мы пользуемся светом, а свет, согласно квантовой теории, состоит из фотонов с импульсом р = k /λ . Чтобы обнаружить частицу, на ней должен рассеяться или поглотиться хотя бы один из фотонов пучка света. Следовательно, частице будет передан импульс, по крайней мере достигающей h /λ . Таким образом, в момент наблюдения частицы с неопределенностью координаты Δх ≈ λ неопределенность импульса должна быть Δр ≥ h /λ .
Перемножая эти неопределенности, получаем:
–
принцип неопределенности выполняется.
Процесс взаимодействия прибора с изучаемым объектом называется измерением. Этот процесс протекает в пространстве и во времени. Существует важное различие между взаимодействием прибора с макро- и микрообъектами. Взаимодействие прибора с макрообъектом есть взаимодействие двух макрообъектов, которое достаточно точно описывается законами классической физики. При этом можно считать, что прибор не оказывает на измеряемый объект влияния, либо это влияние мало. При взаимодействии прибора с микрообъектами возникает иная ситуация. Процесс фиксации определенного положения микрочастицы вносит в ее импульс изменение, которое нельзя сделать равным нулю:
Δр х ≥ ħ/ Δх.
Поэтому воздействие прибора на микрочастицу нельзя считать малым и несущественным, прибор изменяет состояние микрообъекта – в результате измерения определенные классические характеристики частицы (импульс и др.) оказываются заданными лишь в рамках, ограниченных соотношением неопределенностей.
Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.
Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону (т.е. е - iωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн (немецкий физик) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или -функцией (пси - функцией).
Волновая функция - функция координат и времени.
Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.
Ψ * - функция комплексно сопряженная с Ψ
(z = a +ib, z * =a- ib, z * - комплексно сопряженное)
Если частица находится в конечном объеме V, то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)
Р
=
1 ![]()
В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,
Условие нормировки
интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).
- функция должна быть
1) конечной (так как Р не может быть больше1),
2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).
непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),
Волновая функция удовлетворяет принципу суперпозиции : если система может находится в различных состояниях, описываемых волновыми функциями 1 , 2 ... n , то она может находится в состоянии , описываемой линейной комбинаций этих функций:
![]()
С n (n=1,2...) - любые числа.
С помощью волновой функции вычисляются средние значения любой физической величины частицы
![]()
§5 Уравнение Шредингера
Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.
(1)
Временное уравнение Шредингера.
Набла - оператор Лапласа 
Потенциальная функция частицы в силовом поле,
Ψ(y,z,t) - искомая функция
Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:
(2)
Е - полная энергия частицы, постоянная в случае стационарного поля.
Подставив (2) (1):

(3)
Уравнение Шредингера для стационарных состояний.
Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.
Граничные условия:
волновые функции должны быть регулярными , т.е.
1)конечными;
2) однозначными;
3) непрерывными.
Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр - дискретный , если непрерывные - сплошной или непрерывный .
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микробъектам, диктуемая соотношением неопределенностей, а также противоречие целого ряда экспериментов с применяемыми в начале XX в. теориями привели к новому этапу развития квантовой теории - созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств.
В квантовой механике состояние микрочастиц описывается с помощью волновой функции , которая является основным носителем информации об их корпускулярных и волновых свойствах . Вероятность нахождения частицы в элементе объемом dV равна
dW = │Ψ│ 2 dV . (33.6)
Величина │Ψ│ 2 = dW/dV - имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х , у , z . Таким образом, физический смысл имеет не сама Ψ- функция, а квадрат ее модуля |Ψ| 2 , которым задается интенсивность волн де Бройля.
Вероятность найти частицу в момент времени t в конечном объеме V , равна
W= = │ Ψ│ 2 dV . (33.7)
Так как │ Ψ│ 2 dV определяется как вероятность, то необходимо волновую функцию Ψ нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей
│ Ψ│ 2 dV =1, (33.8)
где данный интеграл (8) вычисляется по всему бесконечному пространству, т. е. по координатам х , у , z от - ∞ до ∞. Функция Ψ должна быть конечной, однозначной, и непрерывной.
Уравнение Шредингера
Уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы волновые свойства частиц. Оно должно быть уравнением относительно волновой функции Ψ(х , у , z , t ), так как величина │ Ψ│ 2 определяет вероятность пребывания частицы в момент времени в объеме.
Основное уравнение сформулированоЭ. Шредингером: уравнения не выводится, а постулируется.
Уравнение Шредингера имеет вид:
- ΔΨ + U (x ,y , z , t )Ψ = iħ , (33.9)
где ħ=h/ (2π ), т -масса частицы, Δ-оператор Лапласа, i - мнимая единица,U (x ,y ,z ,t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x ,y , z , t ) - искомая волновая функция частицы.
Уравнение (32.9) является общим уравнением Шредингера . Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (33.9) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функцияU (x ,y ,z ,t ) не зависит явно от времени и имеет смысл потенциальной энергии.
∆ Ψ + (E -U )Ψ = 0. (33.10)
Уравнение (33.10) называется уравнением Шредингера для стационарных состояний .
В это уравнение в качестве параметра входит полная энергия Е частицы. Решение уравнения имеет место не при любых значениях параметра Е , а лишь при определенном наборе, характерном для данной задачи. Эти значения энергии называются собственными. Собственные значения Е могут образовывать как непрерывный и дискретный ряд.
