Формулы сложения синусов и косинусов примеры. Формулы сложения: доказательство, примеры. Формулы сложения тангенсов и котангенсов

Я не буду убеждать вас не писать шпаргалки. Пишите! В том числе, и шпаргалки по тригонометрии. Позже я планирую объяснить, зачем нужны шпаргалки и чем шпаргалки полезны. А здесь — информация, как не учить, но запомнить некоторые тригонометрические формулы. Итак — тригонометрия без шпаргалки!Используем ассоциации для запоминания.

1. Формулы сложения:

косинусы всегда «ходят парами»: косинус-косинус, синус-синус. И еще: косинусы — «неадекватны». Им «все не так», поэтому они знаки меняют: «-» на «+», и наоборот.

Синусы — «смешиваются» : синус-косинус, косинус-синус.

2. Формулы суммы и разности:

косинусы всегда «ходят парами». Сложив два косинуса — «колобка», получаем пару косинусов- «колобков». А вычитая, колобков точно не получим. Получаем пару синусов. Еще и с минусом впереди.

Синусы — «смешиваются» :

3. Формулы преобразования произведения в сумму и разность.

Когда мы получаем пару косинусов? Когда складываем косинусы. Поэтому

Когда мы получаем пару синусов? При вычитании косинусов. Отсюда:

«Смешение» получаем как при сложении, так и при вычитании синусов. Что приятнее: складывать или вычитать? Правильно, складывать. И для формулы берут сложение:

В первой и в третьей формуле в скобках — сумма. От перестановки мест слагаемых сумма не меняется. Принципиален порядок только для второй формулы. Но, чтобы не путаться, для простоты запоминания мы во всех трех формулах в первых скобках берем разность

а во вторых — сумму

Шпаргалки в кармане дают спокойствие: если забыл формулу, можно списать. А дают уверенность: если воспользоваться шпаргалкой не удастся, формулы можно легко вспомнить.

Продолжаем наш разговор про наиболее употребляемые формулы в тригонометрии. Важнейшие из них – формулы сложения.

Определение 1

Формулы сложения позволяют выразить функции разности или суммы двух углов с помощью тригонометрических функций этих углов.

Для начала мы приведем полный список формул сложения, потом докажем их и разберем несколько наглядных примеров.

Yandex.RTB R-A-339285-1

Основные формулы сложения в тригонометрии

Выделяют восемь основных формул: синус суммы и синус разности двух углов, косинусы суммы и разности, тангенсы и котангенсы суммы и разности соответственно. Ниже приведены их стандартные формулировки и вычисления.

1.Синус суммы двух углов можно получить следующим образом:

Вычисляем произведение синуса первого угла на косинус второго;

Умножаем косинус первого угла на синус первого;

Складываем получившиеся значения.

Графическое написание формулы выглядит так: sin (α + β) = sin α · cos β + cos α · sin β

2. Синус разности вычисляется почти так же, только полученные произведения нужно не сложить, а вычесть друг из друга. Таким образом, вычисляем произведения синуса первого угла на косинус второго и косинуса первого угла на синус второго и находим их разность. Формула пишется так: sin (α - β) = sin α · cos β + sin α · sin β

3. Косинус суммы. Для него находим произведения косинуса первого угла на косинус второго и синуса первого угла на синус второго соответственно и находим их разность: cos (α + β) = cos α · cos β - sin α · sin β

4. Косинус разности: вычисляем произведения синусов и косинусов данных углов, как и ранее, и складываем их. Формула: cos (α - β) = cos α · cos β + sin α · sin β

5. Тангенс суммы. Эта формула выражается дробью, в числителе которой – сумма тангенсов искомых углов, а в знаменателе – единица, из которой вычитается произведение тангенсов искомых углов. Все понятно из ее графической записи: t g (α + β) = t g α + t g β 1 - t g α · t g β

6. Тангенс разности. Вычисляем значения разности и произведения тангенсов данных углов и поступаем с ними схожим образом. В знаменателе мы прибавляем к единице, а не наоборот: t g (α - β) = t g α - t g β 1 + t g α · t g β

7. Котангенс суммы. Для вычислений по этой формуле нам понадобятся произведение и сумма котангенсов данных углов, с которыми мы поступаем следующим образом: c t g (α + β) = - 1 + c t g α · c t g β c t g α + c t g β

8. Котангенс разности. Формула схожа с предыдущей, но в числителе и знаменателе – минус, а не плюс c t g (α - β) = - 1 - c t g α · c t g β c t g α - c t g β .

Вы, наверное, заметили, что эти формулы попарно схожи. При помощи знаков ± (плюс-минус) и ∓ (минус-плюс) мы можем сгруппировать их для удобства записи:

sin (α ± β) = sin α · cos β ± cos α · sin β cos (α ± β) = cos α · cos β ∓ sin α · sin β t g (α ± β) = t g α ± t g β 1 ∓ t g α · t g β c t g (α ± β) = - 1 ± c t g α · c t g β c t g α ± c t g β

Соответственно, мы имеем одну формулу записи для суммы и разности каждого значения, просто в одном случае мы обращаем внимание на верхний знак, в другом – на нижний.

Определение 2

Мы можем взять любые углы α и β , и формулы сложения для косинуса и синуса подойдут для них. Если мы можем правильно определить значения тангенсов и котангенсов этих углов, то формулы сложения для тангенса и котангенса будут также для них справедливы.

Как и большинство понятий в алгебре, формулы сложения могут быть доказаны. Первая формула, которую мы докажем, - формула косинуса разности. Из нее потом можно легко вывести остальные доказательства.

Уточним основные понятия. Нам понадобится единичная окружность. Она получится, если мы возьмем некую точку A и повернем вокруг центра (точки O) углы α и β . Тогда угол между векторами O A 1 → и O A → 2 будет равняться (α - β) + 2 π · z или 2 π - (α - β) + 2 π · z (z – любое целое число). Получившиеся вектора образуют угол, который равен α - β или 2 π - (α - β) , или он может отличаться от этих значений на целое число полных оборотов. Взгляните на рисунок:

Мы воспользовались формулами приведения и получили следующие результаты:

cos ((α - β) + 2 π · z) = cos (α - β) cos (2 π - (α - β) + 2 π · z) = cos (α - β)

Итог: косинус угла между векторами O A 1 → и O A 2 → равняется косинусу угла α - β , следовательно, cos (O A 1 → O A 2 →) = cos (α - β) .

Вспомним определения синуса и косинуса: синус - функция угла, равная отношению катета противолежащего угла к гипотенузе, косинус – это синус дополнительного угла. Следовательно, точки A 1 и A 2 имеют координаты (cos α , sin α) и (cos β , sin β) .

Получим следующее:

O A 1 → = (cos α , sin α) и O A 2 → = (cos β , sin β)

Если непонятно, взгляните на координаты точек, расположенных в начале и конце векторов.

Длины векторов равны 1 , т.к. у нас единичная окружность.

Разберем теперь скалярное произведение векторов O A 1 → и O A 2 → . В координатах оно выглядит так:

(O A 1 → , O A 2) → = cos α · cos β + sin α · sin β

Из этого мы можем вывести равенство:

cos (α - β) = cos α · cos β + sin α · sin β

Таким образом, формула косинуса разности доказана.

Теперь мы докажем следующую формулу – косинуса суммы. Это проще, поскольку мы можем воспользоваться предыдущими расчетами. Возьмем представление α + β = α - (- β) . У нас есть:

cos (α + β) = cos (α - (- β)) = = cos α · cos (- β) + sin α · sin (- β) = = cos α · cos β + sin α · sin β

Это и есть доказательство формулы косинуса суммы. В последней строчке использовано свойство синуса и косинуса противоположных углов.

Формулу синуса суммы можно вывести из формулы косинуса разности. Возьмем для этого формулу приведения:

вида sin (α + β) = cos (π 2 (α + β)) . Так
sin (α + β) = cos (π 2 (α + β)) = cos ((π 2 - α) - β) = = cos (π 2 - α) · cos β + sin (π 2 - α) · sin β = = sin α · cos β + cos α · sin β

А вот доказательство формулы синуса разности:

sin (α - β) = sin (α + (- β)) = sin α · cos (- β) + cos α · sin (- β) = = sin α · cos β - cos α · sin β
Обратите внимание на использование свойств синуса и косинуса противоположных углов в последнем вычислении.

Далее нам нужны доказательства формул сложения для тангенса и котангенса. Вспомним основные определения (тангенс – отношение синуса к косинусу, а котангенс –наоборот) и возьмем уже выведенные заранее формулы. У нас получилось:

t g (α + β) = sin (α + β) cos (α + β) = sin α · cos β + cos α · sin β cos α · cos β - sin α · sin β

У нас получилась сложная дробь. Далее нам нужно разделить ее числитель и знаменатель на cos α · cos β , учитывая что cos α ≠ 0 и cos β ≠ 0 , получаем:
sin α · cos β + cos α · sin β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β = sin α · cos β cos α · cos β + cos α · sin β cos α · cos β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β

Теперь сокращаем дроби и получаем формулу следующего вида: sin α cos α + sin β cos β 1 - sin α cos α · s i n β cos β = t g α + t g β 1 - t g α · t g β .
У нас получилось t g (α + β) = t g α + t g β 1 - t g α · t g β . Это и есть доказательство формулы сложения тангенса.

Следующая формула, которую мы будем доказывать – формула тангенса разности. Все наглядно показано в вычислениях:

t g (α - β) = t g (α + (- β)) = t g α + t g (- β) 1 - t g α · t g (- β) = t g α - t g β 1 + t g α · t g β

Формулы для котангенса доказываются схожим образом:
c t g (α + β) = cos (α + β) sin (α + β) = cos α · cos β - sin α · sin β sin α · cos β + cos α · sin β = = cos α · cos β - sin α · sin β sin α · sin β sin α · cos β + cos α · sin β sin α · sin β = cos α · cos β sin α · sin β - 1 sin α · cos β sin α · sin β + cos α · sin β sin α · sin β = = - 1 + c t g α · c t g β c t g α + c t g β
Далее:
c t g (α - β) = c t g   (α + (- β)) = - 1 + c t g α · c t g (- β) c t g α + c t g (- β) = - 1 - c t g α · c t g β c t g α - c t g β

Формулы сложения служат для того, чтобы выразить через синусы и косинусы углов а и b, значения функций cos(a+b), cos(a-b), sin(a+b), sin(a-b).

Формулы сложения для синусов и косинусов

Теорема: Для любых a и b справедливо следующее равенство cos(a+b) = cos(a)*cos(b) - sin(a)*sin(b).

Докажем эту теорему. Рассмотрим следующий рисунок:

На нём, точки Ma, M-b, M(a+b), получены поворотом точки Мо на углы a, -b, и a+b соответственно. Из определений синуса и косинуса координаты этих точек будут слеюующими: Ma(cos(a); sin(a)), M-b (cos(-b); sin(-b)), M(a+b) (cos(a+b); sin(a+b)). УголМоОМ(a+b) = уголМ-bОМа, следовательно равны треугольники МоОМ(a+b) и М-bОМа, причем они равнобедренные. А значит, равны и основания МоМ(а-b) и М-bМа. Следовательно, (МоМ(а-b))^2 = (М-bМа)^2. Воспользовавшись формулой расстояния между двумя точками, получим:

(1 - cos(a+b))^2 + (sin(a+b))^2 = (cos(-b) - cos(a))^2 + (sin(-b) - sin(a))^2.

sin(-a) = -sin(a) и cos(-a) = cos(a). Преобразуем наше равенство с учетом этих формул и квадрата суммы и разности, тогда:

1 -2*cos(a+b) + (cos(a+b))^2 +(sin(a+b))^2 = (cos(b))^2 - 2*cos(b)*cos(a) + (cos(a)^2 +(sin(b))^2 +2*sin(b)*sin(a) + (sin(a))^2.

Теперь применим основное тригонометрическое тождество:

2-2*cos(a+b) = 2 - 2*cos(a)*cos(b) + 2*sin(a)*sin(b).

Приведем подобные и сократим на -2:

cos(a+b) = cos(a)*cos(b) - sin(a)*sin(b). Что и требовалось доказать.

Справедливы также следующие формулы:

  • cos(a-b) = cos(a)*cos(b) + sin(a)*sin(b);
  • sin(a+b) = sin(a)*cos(b) + cos(a)*sin(b);
  • sin(a-b) = sin(a)*cos(b) - cos(a)*sin(b).

Данные формулы можно получить из доказанной выше, используя формулы приведения и заменой b на -b. Для тангенсов и котангенсов тоже существуют формулы сложения, но они будут справедливы не для любых аргументов.

Формулы сложения тангенсов и котангенсов

Для любых углов a,b кроме a=pi/2+pi*k, b=pi/2 +pi*n и a+b =pi/2 +pi*m, для любых целых k,n,m будет справедлива следующая формула:

tg(a+b) = (tg(a) +tg(b))/(1-tg(a)*tg(b)).

Для любых углов a,b кроме a=pi/2+pi*k, b=pi/2 +pi*n и a-b =pi/2 +pi*m, для любых целых k,n,m будет справедлива следующая формула:

tg(a-b) = (tg(a)-tg(b))/(1+tg(a)*tg(b)).

Для любых углов a,b кроме a=pi*k, b=pi*n, a+b = pi*m и для любых целых k,n,m будет справедлива следующая формула:

ctg(a+b) = (ctg(a)*ctg(b) -1)/(ctg(b)+ctg(a)).

Поделиться: