Что такое упругий и неупругий удар. Закон сохранения импульса. Соударение двух тел Кинетическая энергия после неупругого удара

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

Закон сохранения механической энергии и закон сохранения импульса при упругом ударе способствует нахождению решения механических задач с неизвестными действующими силами, то есть задания с ударным взаимодействием тел.

Применение такого вида задач используется в технике и физике элементарных частиц.

Определение 1

Удар или столкновение – это кратковременное взаимодействие тел с последующим изменением их скорости.

При столкновении действуют неизвестные кратковременные ударные силы. Закон Ньютона не разрешит ударное взаимодействие, а позволит только исключить сам процесс столкновения и получить связь между скоростями тел до и после столкновений без промежуточных значений.

Механика применяет такое определения абсолютно упругих и абсолютно неупругих ударов.

Определение 2

Абсолютно неупругий удар – это ударное взаимодействие с соединением (слипанием) движущихся тел.

Сохранение механической энергии отсутствует, так как переходит во внутреннюю, то есть нагревание.

Попадание пули в баллистический маятник – характерный пример действия энергии абсолютно неупругого удара, где
М – подвешенный ящик с песком, показанный на рисунке 1 . 21 . 1 , m – горизонтально летящая пуля с v → скоростью движения, застревающая в ящике. Определение скорости пули возможно по отклонению маятника.

Если скорость ящика с пулей обозначить как u → , тогда, используя формулу сохранения импульса, получаем:

m v = (M + m) u ; u = m M + m v .

Когда пуля застревает в песке, то механическая энергия теряется:

∆ E = m v 2 2 - (M + m) u 2 2 = M M + m · m v 2 2 .

M (M + m) обозначает долю кинетической энергии выпущенной пули и прошедшей во внутреннюю энергию системы. Тогда

∆ E E 0 = M M + m = 1 1 + m M .

Использование формулы подходит для задач с наличием баллистического маятника и другого неупругого соударения разномасных тел.

Когда m < < М ∆ E E 0 → 1 2 , тогда происходит переход кинетической энергии во внутреннюю. Когда m = M ∆ E E 0 → 0 , только половина кинетической переходит во внутреннюю. Если имеется неупругое соударение движущегося тела большей массой с неподвижным, имеющим (m > > М) , отношение принимает вид ∆ E E 0 → 0 .

Расчет движения маятника производится по закону сохранения механической энергии. Получаем

(M + m) u 2 2 = (M + m) g h ; u 2 = 2 g h .

В данном случае h является максимальной высотой подъема маятника. Отсюда следует, что

v = M + m m 2 g h .

При известной высоте h возможно определение скорости пули v .

Рисунок 1 . 21 . 1 . Баллистический маятник.

Определение 3

Абсолютный упругий удар – это столкновение с сохранением механической энергии системы тел.

Большинство случаев столкновения атомов подчинено законам абсолютного упругого центрального удара. Закон сохранения импульса и механической энергии сохраняются при таком ударе. Для примера используется столкновение при помощи центрального удара бильярдных шаров. Один из них находится в состоянии покоя, как изображено подробно на рисунке 1 . 21 . 2 .

Определение 4

Центральный удар – это соударение, когда скорости шаров направлены по линии центра.

Рисунок 1 . 21 . 2 . Абсолютно упругий центральный удар шаров.

Встречаются случаи, когда массы m 1 и m 2 не равны. Тогда, используя закон сохранения механической энергии, получаем

m 1 v 1 2 2 = m 1 v 1 2 2 + m 2 v 2 2 2 .

За v 1 принимается скорость при абсолютном упругом ударе первого шара перед столкновением, а v 2 = 0 скорость второго шара, u 1 и u 2 – скорости после столкновения.

Определение 5

Запись закона сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, принимает вид:

m 1 v 1 = m 1 u 1 + m 2 u 2 .

Полученная система из двух уравнений позволяет найти неизвестные скорости u 1 и u 2 шаров после столкновения.

u 1 = m 1 - m 2 v 1 m 1 + m 2 ; u 2 = 2 m 1 v 1 m 1 + m 2 .

Если массы равны, то есть, тогда происходит остановка первого шара (u 1 = 0) , а второй продолжает движение u 2 = v 1 . происходит обмен скоростями и импульсами.

При наличии нулевой скорости второго шара (v 2 ≠ 0) , задача могла бы свестись к предыдущей с переходим в новую систему отсчета с равномерным и прямолинейным движением и скоростью v 2 относительно «неподвижной» системы. В такой системе второй шар покоится до удара, а первый имеет скорость v 1 " = v 1 – v 2 . После определения скорости шаров v 1 и v 2 производится переход к «неподвижной» системе.

С помощью закона сохранения механической энергии и импульса, можно определить скорости шаров после столкновений только с известными скоростями до соударения.

Рисунок 1 . 21 . 3 . Модель упругие и неупругие соударения.

При столкновении атомов или молекул применяется понятие центрального или лобового удара, который редко применим на практике. Нецентральный упругий удар не направлен по одной прямой.

Частный случай нецентрального упругого удара – соударение бильярдных шаров с одинаковой массой при обездвиженном одним из них, а другим направленным не по линии центра. Данная ситуация приведена на рисунке 1 . 21 . 4 .

Рисунок 1 . 21 . 4 . Нецентральное упругое соударение шаров с одинаковой массой, где d является прицельным расстоянием.

Нецентральное ударение характеризуется тем, что разлетатание шаров происходит под углом относительно друг друга. Чтобы определить скорости v 1 и v 2 после соударения, необходимо знать нахождение положения линии центров в момент удара или предельное расстояние d , изображенное на рисунке 1 . 21 . 4 .

Определение 6

Предельным расстоянием называют расстояние между двумя линиями, которые проведены через центры шаров параллельно относительно вектора скорости v 1 → летящего шара.

При одинаковых массах шаров векторы v 1 → и v 2 → имеют перпендикулярное направление друг к другу. Это возможно показать с помощью применения законов сохранения импульса и энергии. Если m 1 = m 2 = m , тогда определение примет вид

v 1 → = u 1 → + u 2 → ; v 1 2 = u 1 2 + u 2 2 .

Первое равенство значит, что векторы v 1 → , u 1 → , u 2 → образуют треугольник, называемый диаграммой импульсов, второе – для его разрешения применяют теорему Пифагора. Угол, располагаемый между u 1 → и u 2 → , равняется 90 градусов.

Рисунок 1 . 21 . 5 . Модель соударения упругих шаров

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На этом уроке мы продолжаем изучать законы сохранения и рассмотрим различные возможные удары тел. Из своего опыта вы знаете, что накачанный баскетбольный мяч хорошо отскакивает от пола, тогда как сдутый - практически не отскакивает. Из этого вы могли сделать вывод, что удары различных тел могут быть разными. Для того чтобы охарактеризовать удары, вводятся абстрактные понятия абсолютно упругого и абсолютно неупругого ударов. На этом уроке мы займемся изучением различных ударов.

Тема: Законы сохранения в механике

Урок: Столкновение тел. Абсолютно упругий и абсолютно неупругий удары

Для изучения строения вещества, так или иначе, используются различные столкновения. Например, для того, чтобы рассмотреть какой-то предмет, его облучают светом, или потоком электронов, и по рассеянию этого света, или потока электронов получают фотографию, или рентгеновский снимок, или изображение данного предмета в каком-либо физическом приборе. Таким образом, столкновение частиц - это то, что окружает нас и в быту, и в науке, и в технике, и в природе.

Например, при одном столкновении ядер свинца в детекторе ALICE Большого Адронного Коллайдера рождаются десятки тысяч частиц, по движению и распределению которых можно узнать о самых глубинных свойствах вещества. Рассмотрение процессов столкновения с помощью законов сохранения, о которых мы говорим, позволяет получать результаты, независимо от того, что происходит в момент столкновения. Мы не знаем, что происходит в момент столкновения двух ядер свинца, но мы знаем, какова будет энергия и импульс частиц, которые разлетаются после этих столкновений.

Сегодня мы рассмотрим взаимодействие тел в процессе столкновения, иными словами движение невзаимодействующих тел, которые меняют свое состояние только при соприкосновении, которое мы называем столкновением, или ударом.

При столкновении тел, в общем случае, кинетическая энергия сталкивающихся тел не обязана быть равной кинетической энергии разлетающихся тел. Действительно, при столкновении тела взаимодействуют друг с другом, воздействуя друг на друга и совершая работу. Эта работа и может привести к изменению кинетической энергии каждого из тел. Кроме того, работа, которую совершает первое тело над вторым, может оказаться неравной работе, которую второе тело совершает над первым. Это может привести к тому, что механическая энергия может перейти в тепло, электромагнитное излучение, или даже породить новые частицы.

Столкновения, при которых не сохраняется кинетическая энергия сталкивающихся тел, называют неупругими.

Среди всех возможных неупругих столкновений, есть один исключительный случай, когда сталкивающиеся тела в результате столкновения слипаются и дальше движутся как одно целое. Такой неупругий удар называют абсолютно неупругим (рис. 1) .

а)б)

Рис. 1. Абсолютное неупругое столкновение

Рассмотрим пример абсолютно неупругого удара. Пусть пуля массой летела в горизонтальном направлении со скоростью и столкнулась с неподвижным ящиком с песком массой , подвешенным на нити. Пуля застряла в песке, и дальше ящик с пулей пришел в движение. В процессе удара пули и ящика внешние силы, действующие на эту систему, - это сила тяжести, направленная вертикально вниз, и сила натяжения нити, направленная вертикально вверх, если время удара пули было настолько мало, что нить не успела отклониться. Таким образом, можно считать, что импульс сил, действующих на тело во время удара, был равен нулю, что означает, что справедлив закон сохранения импульса:

.

Условие, что пуля застряла в ящике, и есть признак абсолютно неупругого удара. Проверим, что произошло с кинетической энергией в результате этого удара. Начальная кинетическая энергия пули:

конечная кинетическая энергия пули и ящика:

простая алгебра показывает нам, что в процессе удара кинетическая энергия изменилась:

Итак, начальная кинетическая энергия пули меньше конечной на некоторую положительную величину. Как же это произошло? В процессе удара между песком и пулей действовали силы сопротивления. Разность кинетических энергий пули до и после столкновения как раз и равны работе сил сопротивления. Другими словами, кинетическая энергия пули пошла на нагрев пули и песка.

Если в результате столкновения двух тел сохраняется кинетическая энергия, такой удар называется абсолютно упругим.

Примером абсолютно упругих ударов могут быть столкновения бильярдных шаров. Мы рассмотрим простейший случай такого столкновения - центральное столкновение.

Центральным называется столкновение, при котором скорость одного шара проходит через центр масс другого шара. (Рис. 2.)

Рис. 2. Центральный удар шаров

Пускай один шар покоится, а второй налетает на него с какой-то скоростью , которая, согласно нашему определению, проходит через центр второго шара. Если столкновение центральное и упругое, то при столкновении возникают силы упругости, действующие вдоль линии столкновения. Это приводит к изменению горизонтальной составляющей импульса первого шара, и к возникновению горизонтальной составляющей импульса второго шара. После удара второй шар получит импульс, направленный направо, а первый шар может двигаться как направо, так и налево - это будет зависеть от соотношения между массами шаров. В общем случае, рассмотрим ситуацию, когда массы шаров различны.

Закон сохранения импульса выполняется при любом столкновении шаров:

В случае абсолютно упругого удара, также выполняется закон сохранения энергии:

Получаем систему из двух уравнений с двумя неизвестными величинами. Решив ее, мы получим ответ.

Скорость первого шара после удара равна

,

заметим, что эта скорость может быть как положительной, так и отрицательной, в зависимости от того, масса какого из шаров больше. Кроме того, можно выделить случай, когда шары одинаковые. В этом случае после удара первый шар остановится. Скорость второго шара, как мы ранее отметили, получилась положительной при любом соотношении масс шаров:

Наконец, рассмотрим случай нецентрального удара в упрощенном виде - когда массы шаров равны. Тогда, из закона сохранения импульса мы можем записать:

А из того, что кинетическая энергия сохраняется:

Нецентральным будет удар, при котором скорость налетающего шара не будет проходить через центр неподвижного шара (рис. 3). Из закона сохранения импульса, видно, что скорости шаров составят параллелограмм. А из того, что сохраняется кинетическая энергия, видно, что это будет не параллелограмм, а квадрат.

Рис. 3. Нецентральный удар при одинаковых массах

Таким образом, при абсолютно упругом нецентральном ударе, когда массы шаров равны, они всегда разлетаются под прямым углом друг к другу.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике - М.: Наука, 1988.
  4. А. В. Пёрышкин, В. В. Крауклис. Курс физики т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Ответ: Да, действительно такие удары существуют в природе. Например, если мяч попадает в сетку футбольных ворот, или кусок пластилина выскальзывает из ваших рук и прилипает к полу, или стрела, которая застряла в подвешенной на нитках мишени, или попадание снаряда в баллистический маятник.

Вопрос: Приведите больше примеров абсолютно упругого удара. Существуют ли они в природе?

Ответ: В природе не существует абсолютно упругих ударов, поскольку при любом ударе часть кинетической энергии тел тратится на совершение некими сторонними силами работы. Однако иногда мы можем считать некие удары абсолютно упругими. Мы вправе делать это, когда изменение кинетической энергии тела при ударе незначительное по сравнению с этой энергией. Примерами таких ударов может служить баскетбольный мяч, который отскакивает от асфальта, или столкновения металлических шариков. Упругими также принято считать соударения молекул идеального газа.

Вопрос: Что делать, когда удар частично упругий?

Ответ: Нужно оценить, какое количество энергии ушло на работу диссипативных сил, то есть таких сил, как сила трения или сила сопротивления. Далее нужно воспользоваться законами сохранения импульса и узнать кинетическую энергию тел после столкновения.

Вопрос: Как стоит решать задачу о нецентральном ударе шаров, имеющих разные массы?

Ответ: Стоит записать закон сохранения импульса в векторной форме, и то, что кинетическая энергия сохраняется. Далее, у вас получится система из двух уравнений и двух неизвестных, решив которую, вы сможете найти скорости шаров после столкновения. Однако, следует отметить, что это достаточно сложный и трудоемкий процесс, выходящий за рамки школьной программы.

Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение) - это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Исходя из данного определения, кроме явлений, которые можно отнести к ударам в прямом смысле этого слова

(столкновения атомов или биллиардных шаров), сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. При ударе в телах возникают столь значительные внутренние силы, что внешними силами, действующими на них, можно пренебречь. Это позволяет рассматривать соударяющиеся тела как замкнутую систему и применять к ней законы сохранения.

Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения показывают, что относительная скорость тел после удара не достигает своего прежнего значения. Это объясняется тем, что нет идеально упругих тел и идеально гладких поверхностей. Отношение нормальных составляющих относительной скорости тел после и до удара называется коэффициентом восстановления :

= v" n /v n .

Если для сталкивающихся тел =0, то такие тела называются абсолютно неупругими, если =1-абсолютно упругими.

На практике для всех тел 0<<1 (например, для стальных шаров 0,56, для шаров из слоновой кости 0,89, для свинца 0). Однако в некоторых случаях тела можно с большой точностью рассматривать либо как абсолютно упругие, либо как абсолютно неупругие.

Прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения, называется линией удара. Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсолютно неупругие удары.

Абсолютно упругий удар - столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии.

Обозначим скорости шаров массами m 1 и m 2 до удара через v 1 и v 2 , после удара - через v" 1 и v" 2 (рис. 18). При прямом центральном ударе векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицательное - движению влево.

При указанных допущениях законы сохранения имеют вид

Произведя соответствующие преобразования в выражениях (15.1) и (15.2), получим

Решая уравнения (15.3) и (15.5), находим

Разберем несколько примеров.

Проанализируем выражения (15.8) и (15.9) для двух шаров различных масс:

а) m 1 = m 2 . Если второй шар до удара висел неподвижно (v 2 =0) (рис. 19), то после удара остановится первый шар (v" 1 =0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара (v" 2 = v 1 );

б) m 1 >m 2 .

Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью (v" 1 1 ). Скорость второго шара после удара больше, чем скорость первого после удара (v" 2 >v" 1) (рис.20);

в) m 1 <m 2 . Направление движения первого шара при ударе изменяется - шар отскакивает обратно. Второй шар движется в ту же сторону, в которую двигался первый шар до удара, но с меньшей скоростью, т.е. v" 2 1 (рис. 21);

г) m 2 >>m 1 (например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что v" 1 =-v 1 , v" 2 2 m 1 v 1 /m 2 0.

2) При m 1 =m 2 выражения (15.6) и (15.7) будут иметь вид

v" 1 =v 2 , v" 2 =v 1 ,

т. е. шары равной массы «обмениваются» скоростями.

Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстречу друг другу (рис. 22).

Если массы шаров m 1 и m 2 , их скорости до удара v 1 и v 2 , то, используя закон сохранения импульса, можно записать

Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае если массы шаров равны (m 1 = m 2 ), то

v = (v 1 +v 2)/2.

Выясним, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними дей-

ствуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту «потерю» можно определить по разности кинетической энергии тел до и после удара:

Если ударяемое тело было первоначально неподвижно (v 2 = 0), то

Когда m 2 > > m 1 (масса неподвижного тела очень большая), то v< 1 и почти вся кинетическая энергия тела при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка. Наоборот, при забивании гвоздей в стену масса молотка должна быть гораздо большей (m 1 >>m 2 ), тогда v v 1 и практически вся энергия затрачивается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.

Абсолютно неупругий удар - пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

Контрольные вопросы

В чем различие между понятиями энергии и работы?

Как найти работу переменной силы?

Какую работу совершает равнодействующая всех сил, приложенных к телу, равномерно движущемуся по окружности?

Что такое мощность? Вывести ее формулу.

Дайте определения и выведите формулы для известных вам видов механической энергии. Какова связь между силой и потенциальной энергией?

Почему изменение потенциальной энергии обусловлено только работой консервативных сил?

В чем заключается закон сохранения механической энергии? Для каких систем он выполняется?

Необходимо ли условие замкнутости системы для выполнения закона сохранения механической энергии?

В чем физическая сущность закона сохранения и превращения энергии? Почему он является фундаментальным законом природы?

Каким свойством времени обусловливается справедливость закона сохранения механической энергии?

Что такое потенциальная яма? потенциальный барьер?

Какие заключения о характере движения тел можно сделать из анализа потенциальных кривых?

Как охарактеризовать положения устойчивого и неустойчивого равновесия? В чем их различие?

Чем отличается абсолютно упругий удар от абсолютно неупругого?

Как определить скорости тел после центрального абсолютно упругого удара? Следствием каких законов являются эти выражения?

Задачи

3.1. Определить: 1) работу поднятия груза по наклонной плоскости; 2) среднюю и 3) максимальную мощности подъемного устройства, если масса груза 10 кг, длина наклонной плоскости 2 м, угол ее наклона к горизонту 45°, коэффициент трения 0,1 и время подъема 2 с.

3.3. Пренебрегая трением, определить наименьшую высоту, с которой должна скатываться тележка с человеком по желобу, переходящему в петлю радиусом 10 м, чтобы она сделала полную петлю и не выпала из желоба.

3.4. Пуля массой m= 10 г, летевшая горизонтально со скоростью v = 500 м/с, попадает в баллистический маятник длиной l = 1 м и массой М = 5 кг и застревает в нем. Определить угол отклонения маятника. [ 18°30" ]

3.5. Зависимость потенциальной энергии частицы в центральном силовом поле от расстояния r до

центра поля задается выражением П(r) =A/r 2 -B/r, где А и В - положительные постоянные.

Определить значение r 0 , соответствующее равновесному положению частицы. Является ли это положение положением устойчивого равновесия? [ r 0 = 2А/В]

3.6. При центральном абсолютно упругом ударе движущееся тело массой m 1 ударяется в покоящееся тело массой m 2 , в результате чего скорость первого тела уменьшается в n = 1,5 раза. Определить: 1) отношение m 1 / m 2 ; 2) кинетическую энергию T" 2 , с которой начнет двигаться второе тело, если первоначальная кинетическая энергия первого тела T 1 = 1000 Дж. [ 1) 5; 2) 555 Дж ]

3.7. Тело массой m 1 =4 кг движется со скоростью v 1 =3 м/с и ударяется о неподвижное тело такой же массы. Считая удар центральным и неупругим, определить количество теплоты, выделившееся при ударе.

* У. Гамильтон (1805-1865) - ирландский математик и физик.

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

Мера инертности – масса .

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями и соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через и приращения этих скоростей за время взаимодействия между точками . Будем считать, что приращения имеют противоположные направления и связаны соотношением . Мы знаем, что коэффициенты и не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты и являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как и соответственно, а после взаимодействия — и . В этом случае приращения скоростей могут быть представлены в таком виде — и . Следовательно, соотношение можно записать так — .

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости —

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — , где и . Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Необходимое определение:

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы , действующие на точку, можно определить так: можно определить так: . – потенциальная энергия материальной точки. Помножим обе части на и получим . Преобразуем и получим выражение доказывающее закон сохранения энергии .

Упругие и неупругие столкновения

Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара , с и испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса . Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — . Кинетические энергии до и после удара: и . Найдем разность

,

где – приведенная масса шаров . Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Поделиться: